FEATURES

mm inch

1. High frequency characteristics
(Impedance $50 \Omega, \sim 1.0 \mathrm{GHz}$)

- Insertion loss; Max. 0.3dB
- Isolation; Min. 20dB
(Between open contacts)
Min. 30dB
(Between contact sets)
- V.S.W.R.; Max. 1.2

2. Surface mount terminal

This relay is a surface-mounted model with excellent high-frequency properties. In addition, it can use a microstrip line in the base circuit design which spares the labor of machining the base.

3. Low profile small type

$9.7(\mathrm{~W}) \times 14.7(\mathrm{~L}) \times 5.9(\mathrm{H}) \mathrm{mm}$
$.382(\mathrm{~W}) \times .579(\mathrm{~L}) \times .232(\mathrm{H})$ inch
4. High sensitivity: 140 mW nominal operating power
5. High contact reliability

Electrical life: Min. 10^{7} (10mA 10V DC)

TYPICAL APPLICATIONS

- Measurement instruments

Oscilloscope attenuator circuit

SPECIFICATIONS

Contact			
Arrangement			2 Form C
Contact material			Gold-clad silver alloy
Initial contact resistance			Max. $75 \mathrm{~m} \Omega$
Rating	Contact rating (resistive)		10 mA 10 V DC 1 A 30 V DC
	Contact carrying power		$\begin{gathered} \text { Max. 3W (at } 1.0 \mathrm{GHz}, \\ \text { impedance } 50 \Omega, \\ \text { V.S.W.R. max.1.2) } \\ \hline \end{gathered}$
	Max. switching voltage		30 V DC
	Max. switching current		1A
High frequency characteristics ($\sim 1 \mathrm{GHz}$, Impedance 50Ω)	Isolation	Between open contacts	Min. 20dB
		Between contact sets	Min. 30dB
	Insertion loss		Max. 0.3dB
	V.S.W.R.		Max. 1.2
	Input power		$\begin{gathered} \text { Max. 3W (at } 1.0 \mathrm{GHz}, \\ \text { impedance } 50 \Omega, \\ \text { V.S.W.R. max.1.2) } \\ \hline \end{gathered}$
Nominal operating power	Single side stable		$\begin{gathered} 140 \mathrm{~mW}(1.5 \text { to } 12 \mathrm{~V}) \\ 200 \mathrm{~mW}(24 \mathrm{~V}) \\ 300 \mathrm{~mW}(48 \mathrm{~V}) \\ \hline \end{gathered}$
	1 coil latching		$\begin{gathered} 70 \mathrm{~mW}(1.5 \text { to } 12 \mathrm{~V}) \\ 100 \mathrm{~mW}(24 \mathrm{~V}) \end{gathered}$
	2 coil latching		$\begin{gathered} 140 \mathrm{~mW}(1.5 \text { to } 12 \mathrm{~V}) \\ 200 \mathrm{~mW}(24 \mathrm{~V}) \end{gathered}$
Expected life (min. operation)	Mechanical (at 180 cpm)		10^{8}
	Electrical	10 mA 10 V DC (resistive load)	10^{7}
	(at 20 cpm)	1A 30 V DC (resistive load)	10^{5}

Characteristics

Initial insulation resistance *1			Min. $100 \mathrm{M} \Omega$ (at 500 V DC)
Initial breakdown voltage *2	Between open contacts		750 Vrms for 1 min.
	Between contact sets		$1,000 \mathrm{Vrms}$ for 1 min .
	Between contact and coil		1,000 Vrms for 1 min .
	Between contact and earth terminal		1,000 Vrms for 1 min .
Operate time [Set time] ${ }^{* 3}$ (at $20^{\circ} \mathrm{C}$)			Max. 4ms (Approx. 2ms) [Max. 4ms (Approx. 2ms)]
Release time (without diode) [Reset time] ${ }^{* 3}$ (at $20^{\circ} \mathrm{C}$)			Max. 4ms (Approx. 1ms) [Max. 4ms (Approx. 2ms)]
Temperature rise (at $20^{\circ} \mathrm{C}$) ${ }^{* 4}$			Max. $60^{\circ} \mathrm{C}$
Shock resistance		Functional *5	$500 \mathrm{~m} / \mathrm{s}^{2}$
		Destructive *6	$1,000 \mathrm{~m} / \mathrm{s}^{2}$
Vibration resistance		Functional *7	10 to 55 Hz at double amplitude of 3 mm
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Conditions for operation, transport and storage *8 (Not freezing and condensing at low temperature)		Ambient temp	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+185^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5 to 85\% R.H.
Unit weight			Approx. 2g .07oz

Remarks

* Specifications will vary with foreign standards certification ratings.
*1 Measurement at same location as "Initial breakdown voltage" section.
*2 Detection current: 10 mA
${ }^{*}$ Nominal operating voltage applied to the coil, excluding contact bounce time
${ }^{*}$ By resistive method, nominal voltage applied to the coil: 3W contact carrying power: at 1.0 GHz , Impedance 50W, V.S.W.R. Max.1.2
${ }^{*} 5$ Half-wave pulse of sine wave: 11 ms , detection time: $10 \mu \mathrm{~s}$.
${ }^{*}$ Half-wave pulse of sine wave: 6 ms
${ }^{* 7}$ Detection time: $10 \mu \mathrm{~s}$
*8 Refer to 5 . Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT (Page xx)

ORDERING INFORMATION

Note: Packing style; Nil: Tube packing 40 pcs. in an inner package, 1,000 pcs. in an outer package
Z: Tape and reel packing 500 pcs. in an inner package, 1,000 pcs. in an outer package

TYPES ANE COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

- Single side stable type

Part No.	Nominal voltage, V DC	Pick-up voltage, V DC (max.) (initial)	Drop-out voltage, V DC (min.)(initial)	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating current, mA $(\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC
ARA200A1H(Z)	1.5	1.125	0.15	16	93.8	140	2.25
ARA200A03(Z)	3	2.25	0.3	64.3	46.7	140	4.5
ARA200A4H(Z)	4.5	3.375	0.45	145	31	140	6.75
ARA200A05(Z)	5	3.75	0.5	178	28.1	140	7.5
ARA200A06(Z)	6	4.5	0.6	257	23.3	140	9
ARA200A09(Z)	9	6.75	0.9	579	15.5	140	13.5
ARA200A12(Z)	12	9	1.2	1,028	11.7	140	18
ARA200A24(Z)	24	18	2.4	2,880	8.3	200	
ARA200A48(Z)	48	36	4.8	7,680	6.3	30	

- 1 coil latching type

Part No.	Nominal voltage, V DC	Set voltage, V DC (max.) (initial)	Reset voltage, V DC (max.) (initial)	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating current, mA ($\pm 10 \%$)	Nominal operating power, mW	Max. allowable voltage, V DC
ARA210A1H(Z)	1.5	1.125	1.125	32	46.9	70	2.25
ARA210A03(Z)	3	2.25	2.25	128.6	23.3	70	4.5
ARA210A4H(Z)	4.5	3.375	3.375	289.3	15.6	70	6.75
ARA210A05(Z)	5	3.75	3.75	357	14	70	7.5
ARA210A06(Z)	6	4.5	4.5	514	11.7	70	9
ARA210A09(Z)	9	6.75	6.75	1,157	7.8	70	13.5
ARA210A12(Z)	12	9	9	2,057	5.8	70	18
ARA210A24(Z)	24	18	18	5,760	4.2	100	36

- 2 coil latching type

Part No.	Nominal voltage, V DC	Set voltage, V DC (max.) (initial)	Reset voltage, V DC (max.) (initial)	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating current, mA $(\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC
ARA220A1H(Z)	1.5	1.125	1.125	16	93.8	140	
ARA220A03(Z)	3	2.25	2.25	64.3	46.7	2.25	
ARA220A4H(Z)	4.5	3.375	3.375	145	31	4.5	
ARA220A05(Z)	5	3.75	3.75	178	28.1	140	140
ARA220A06(Z)	6	4.5	4.5	257	23.3	140	6.75
ARA220A09(Z)	9	6.75	6.75	579	15.5	140	9
ARA220A12(Z)	12	9	9	1,028	11.7	140	
ARA220A24(Z)	24	18	18	2,880	8.3	200	18

REFERENCE DATA

1-(1). High frequency characteristics (Impedance 50 Ω)
Sample: ARA200A12
Measuring method: Measured with HP network analyzer (HP8753C).

- V.S.W.R.

- Insertion loss

- Isolation

1-(2). High frequency characteristics (Impedance 75Ω)
Sample: ARA200A12
Measuring method: Measured with HP network analyzer (HP8753C).

- V.S.W.R.

- Insertion loss

- Isolation

NOTES

1. Coil operating power

Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5%.
However, check it with the actual circuit since the characteristics may be slightly different. The nominal operating voltage should be applied to the coil for more than 10 ms to set/reset the latching type relay.

2. Coil connection

When connecting coils, refer to the wiring diagram to prevent mis-operation or malfunction.

3. External magnetic field

Since RA relays are highly sensitive polarized relays, their characteristics will be affected by a strong external magnetic field. Avoid using the relay under that condition.

4. Cleaning

For automatic cleaning, the boiling method is recommended. Avoid ultrasonic cleaning which subjects the relays to high frequency vibrations, which may cause the contacts to stick.
It is recommended that alcoholic solvents be used.

5. Soldering

Manual soldering shall be performed under following condition.
Tip temperature: $280^{\circ} \mathrm{C}$ to $300^{\circ} \mathrm{C} .536^{\circ} \mathrm{F}$
to $572^{\circ} \mathrm{F}$
Wattage: 30 to 60W
Soldering time: within 5 s
In case of automatic soldering, the following conditions should be observed

1) Position of measuring temperature

2) IR (infrared reflow) soldering method

A: \qquad B:
t_{1} t_{2} t3 $t 4 t_{5}$ $\mathrm{~T}_{1}=150^{\circ} \mathrm{C} 302^{\circ} \mathrm{F}$ $\mathrm{t}_{2}-\mathrm{t} 1=80$ to 120 s $\mathrm{~T}_{2}=160^{\circ}{ }^{\circ} 320^{\circ} \mathrm{F}$ $\mathrm{t} 5-\mathrm{t} 3=30$ to 40 s $\mathrm{~T}_{3}=183^{\circ} \mathrm{C} 361^{\circ} \mathrm{F}$ $\mathrm{t} 4=170$ to 190 s $\mathrm{~T}_{4}=245^{\circ} \mathrm{C} 473^{\circ} \mathrm{F}$ $\mathrm{T}_{5}=270^{\circ} \mathrm{C} 518{ }^{\circ} \mathrm{F}$

Temperature rise of relay itself may vary according to the mounting level or the heating method of reflow equipment. Therefore, please set the temperature of soldering portion of relay terminal and the top surface of the relay case not to exceed the above mentioned soldering condition. It is recommended to check the temperature rise of each portion under actual mounting condition before use. The soldering earth shall be performed by manual soldering.

