
mm inch

1. Excellent high frequency characteristics ($\sim 2.5 \mathrm{GHz}$, Impedance 50Ω)

- Insertion loss: 0.2 dB or less
- Isolation: 60 dB or more

SPECIFICATIONS

Contact

Arrangement			1 Form C
Contact material			Gold
Initial contact resistance			Max. $100 \mathrm{~m} \Omega$
Rating	Contact rating		10W (2.5 GHz, Impedance 50Ω, V.S.W.R. ≤ 1.2) 10 mA 24 V DC(resistive load)
	Contact carrying power		Max. 20 W (at $40^{\circ} \mathrm{C}$, V.S.W.R. $\leqq 1.2$, Average)
	Max. switching voltage		30 V DC
	Max. switching current		0.5 A DC
High frequency characteristics $(\sim 2.5 \mathrm{GHz}$, Impedance 50Ω)	Isolation		Min. 60 dB
	Insertion loss		Max. 0.2 dB
	V.S.W.R.(Return loss)		Max. 1.2 (Min. 20.8dB)
	Input power		Max. 20 W (at $40^{\circ} \mathrm{C}$, V.S.W.R. $\leqq 1.2$, Average)
Expected life (min. operations)	Mechanical (at 180 cpm)		5×10^{6}
		10 mA 24 V DC (resistive load)	3×10^{5}
	Electrical	10W 2.5 GHz , Impedance 50Ω	10^{5}

Coil (at $20^{\circ} \mathrm{C}, 68^{\circ} \mathrm{F}$)

	Nominal operating power
Single side stable	200 mW
1 coil latching	200 mW
2 coil latching	400 mW

Characteristics

Initial insulation resistance*1			Min. $100 \mathrm{M} \Omega$ (at 500 V DC)
Initial breakdown voltage*2	Between open contacts		500 Vrms
	Between contact and coil		1,000 Vrms
	Between contact and earth terminal		500 Vrms
Operate time [Set time] ${ }^{* 3}$ (at $20^{\circ} \mathrm{C}$)			Max. 10ms (Approx. 6ms) [Max. 10ms (Approx. 5ms)]
Release time (without diode) [Reset time] ${ }^{* 3}$			Max. 6ms (Approx. 3ms) [Max. 10ms (Approx. 5ms)]
Temperature rise (at $20^{\circ} \mathrm{C}$) ${ }^{4}$			Max. $60^{\circ} \mathrm{C}$
Shock resistance		Functional*5	Min. $200 \mathrm{~m} / \mathrm{s}^{2}\{20 \mathrm{G}\}$
		Destructive*6	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}\{100 \mathrm{G}\}$
Vibration resistance		Functional ${ }^{\star 7}$	10 to 55 Hz at double amplitude of 3 mm
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Conditions for operation, transport and storage*8 (Not freezing and condensing at low temperature)		Ambient temp.	$-40^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$
		Humidity	5 to 85% R.H.
Unit weight			Approx. 5 g .18 oz

Remarks

* Specifications will vary with foreign standards certification ratings.
${ }^{* 1}$ Measurement at same location as "Initial breakdown voltage" section.
*2 Detection current: 10 mA
${ }^{* 3}$ Nominal operating voltage applied to the coil, excluding contact bounce time.
${ }^{* 4}$ By resistive method, nominal voltage applied to the coil: Contact carrying power:
20 W , at 2.5 GHz , Impedance 50Ω, V.S.W.R. $\leqq 1.2$
${ }^{* 5}$ Half-wave pulse of sine wave: 11 ms , detection time: $10 \mu \mathrm{~s}$.
${ }^{* 6}$ Half-wave pulse of sine wave: 6 ms
${ }^{* 7}$ Detection time: $10 \mu \mathrm{~s}$
${ }^{* 8}$ Refer to 5 . Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT (Page 61)

TYPICAL APPLICATIONS ORDERING INFORMATION

- Cellular phone base station (W-CDMA, FPLMTS, IMT-2000, PCS, DCS)
- Cellular phone-related measurement devices (SP3T/SP4T switches, etc)
- Wireless LAN
- Wireless Local Loop

Note: Standard packing; Carton: 50 pcs. Case 500 pcs.

TYPES ANE COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

- Single side stable type

Part No.	Nominal voltage, V DC	Pick-up voltage, V DC (max.)(initial)	Drop-out voltage, V DC (min.)(initial)	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating current, $\mathrm{mA}(\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC
ARX1003	3	2.25	0.3	45	66.7	200	3.3
ARX104H	4.5	3.375	0.45	101	44.4	200	4.95
ARX1006	6	4.5	0.6	180	33.3	200	6.6
ARX1009	9	6.75	0.9	405	22.2	200	9.9
ARX1012	12	9	1.2	720	16.7	200	13.2
ARX1024	24	18	2.4	2,880	8.3	200	26.4

- 1 coil latching type

Part No.	Nominal voltage, V DC	Set voltage, V DC (max.)(initial)	Reset voltage, V DC (max.)(initial)	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating current, $\mathrm{mA}(\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC
ARX1103	3	2.25	2.25	45	66.7	200	3.3
ARX114H	4.5	3.375	3.375	101	44.4	200	4.95
ARX1106	6	4.5	4.5	180	33.3	200	6.6
ARX1109	9	6.75	6.75	405	22.2	200	9.9
ARX1112	12	9	9	720	16.7	200	13.2
ARX1124	24	18	18	2,880	8.3	200	26.4

- 2 coil latching type

Part No.	Nominal voltage, V DC	$\begin{gathered} \text { Set } \\ \text { voltage, V DC } \\ \text { (max.)(initial) } \end{gathered}$	Reset voltage, V DC (max.)(initial)	Coil resistance, Ω ($\pm 10 \%$)	Nominal operating current, $\mathrm{mA}(\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC
ARX1203	3	2.25	2.25	22.5	133.3	400	3.3
ARX124H	4.5	3.375	3.375	50.6	88.9	400	4.95
ARX1206	6	4.5	4.5	90	66.7	400	6.6
ARX1209	9	6.75	6.75	202.5	44.4	400	9.9
ARX1212	12	9	9	360	33.3	400	13.2
ARX1224	24	18	18	1,440	16.7	400	26.4

DIMENSIONS

PC board pattern (Bottom view)

$2-0.6 \times 0.3$
$2-.024 \times .012$

(.080) -7 -7.60
 (.108)

Tolerance: $\pm 0.1 \pm .004$
General tolerance: $\pm 0.3 \pm .012$
Single side stable \quad Schematic (Bottom view)

RX

REFERENCE DATA

1. High frequency characteristics

Sample: ARX1012
Measuring method: Measured with HP network analyzer (HP8753C).
The details for the high freqency characteristics and the measurement procedures and conditions are listed in the RX relay test report.

- Insertion loss
- Isolation

- V.S.W.R. (Return loss)

NOTES

1. Coil operating power

Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5%.
However, check it with the actual circuit since the characteristics may be slightly different. The nominal operating voltage should be applied to the coil for more than 30 ms to set/reset the latching type relay.
2. Coil connection

When connecting coils, refer to the wiring diagram to prevent mis-operation or malfunction.

3. External magnetic field

Since RX relays are highly sensitive polarized relays, their characteristics will be affected by a strong external magnetic field. Avoid using the relay under that condition.

4. Cleaning

For automatic cleaning, the boiling method is recommended. Avoid ultrasonic cleaning which subjects the relays to high frequency vibrations, which may cause the contacts to stick.
It is recommended that a fluorinated hydrocarbon or other alcoholic solvents be used.

5. Soldering

The soldering shall be performed under following condition.
Max. $260^{\circ} \mathrm{C} 500^{\circ} \mathrm{F} 10 \mathrm{~s}$
Max. $350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F} 3 \mathrm{~s}$
In addition, when soldering the case to the PC board, the plating may swell depending on the soldering conditions.

