

100A 100V DC **HIGH VOLTAGE RELAY**

EJ RELAYS (AEJ)

FEATURES

• Compact and high capacity using double contacts in series and permanent magnet installed.

1) Nominal switching capacity (resistive load): 100A 100V DC, Min. 104 2) Max. cut-off current: 800A 100V DC

 Compact and lightweight for space savings.

70mm (L) \times 80mm (W) \times 34mm (H) 2.756inch (L) × 3.150inch (W) ×

1.339inch (H) Environmentally friendly

In consideration of the environment, cadmium-free contacts, lead-free solder are used.

TYPICAL APPLICATIONS

Quick recharging power supplies for AGVs (automatic guided vehicle), UPS (uninterruptible power supplies), Fuel cell, Combined heat/power generation system, etc.

RoHS Directive compatibility information http://www.nais-e.com/

SPECIFICATIONS

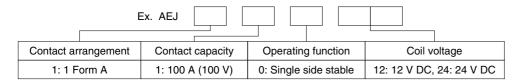
Contact

Arrangement		1 Form A		
Contact voltage drop (Initial)		Max. 0.15V (at 100A)		
Material		Silver alloy		
Rating	Nominal switching capacity (resistive load)	100A 100V DC		
	Max. carrying current/ short time carrying current	1,000A (0.1s)		
	Min. switching capacity#1	1A 12V DC		
	Max. cut-off current	800A 100V DC/3 cycle*1		
	Overload opening rating	300A 150V DC/10 cycle		
Expected life (min. operations)	Mechanical	10 ⁶		
	Electrical*2	10 ⁴ (at 100A 100V DC)		

- #1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the
- #2 When using a surge absorbing element for the relay coil drive circuit, please use with a surge absorbing element with a clamp voltage of 1.5 to 2.0 times the rated operating voltage. When the coil is connected in parallel with a diode, resistor or capacitor, the release time will delay which might lead to degradation in shutoff performance and electrical life.

. Contact terminals have polarity; therefore, please obey the wiring diagram when connecting contacts.

The electrical load performance value applies when a varistor is connected in parallel with the coil.

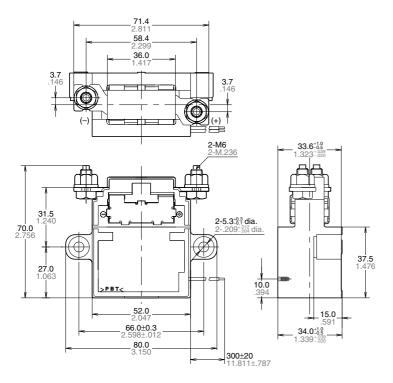

Characteristics

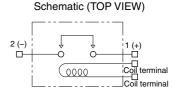
Insulation resistance*3 (Initial) (at 500 V DC)			Min. 100MΩ		
Breakdown voltage (Initial)	Between open contacts		AC 1,500 Vrms for 1 min.		
	Between contact and coil		AC 2,500 Vrms for 1 min.		
Operate time (at 20°C) (at nominal voltage)			Max. 30ms*4		
Release time (at 20°C) (at nominal voltage)			Max. 15ms		
Shock resistance	Functional*5		Min. 500 m/s² {51G} (nominal voltage applied to the coil) Min. 50 m/s² {5.1G} (deenergized)		
	Destructive*6		Min. 1000 m/s ² {102G}		
Vibration resistance	Functional*7		44.1 m/s ² {4.5G} 10 to 200Hz		
	Destructive*8		44.1 m/s ² {4.5G} 10 to 200 Hz		
Conditions for operation, transport and storage*9 (Not freezing and condensing at low temperature)		Ambient temperature	-40°C to +85°C -40°F to +185°F		
Unit weight		1	Approx. 300g 10.58oz		
Remarks			-		

Remarks

- *1 Condition: Nominal switching 100cycles, each cut off 800A
- *2 Resistive load, operating frequency 1s ON, 9s OFF, room temperature
 *3 Measurement at same location as "Breakdown voltage" section.
- *4 Nominal voltage applied to the coil, excluding bounce time.
- *5 Half-wave pulse of sine wave: 11 ms; detection time: 10μs.
- *6 Half-wave pulse of sine wave: 6 ms, nominal voltage applied to the coil or deenergized.
- *7 Nominal voltage applied to the coil or deenergized.
- *8 Nominal voltage applied to the coil or deenergized.
 Time of vibration for each direction; X, Y, Z direction: 4 hours
- *9 Refer to 13. Conditions for operation, transport and storage mentioned in NOTES.

ORDERING INFORMATION


TYPES


Contact arrangement	Coil voltage, V DC	Protective construction	Terminal shape	Part No.
1 Form A	12	- Dust cover	Corour to reginal	AEJ11012
	24		Screw terminal	AEJ11024

COIL DATA

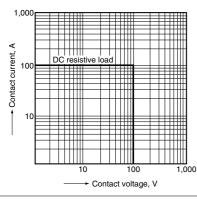
Coil voltage, V DC	Pick-up voltage, V DC (Initial) (at 20°C)	Drop-out voltage, V DC (Initial) (at 20°C)	Nominal operating current, mA (at 20°C)	Coil resistance, Ω (at 20°C)	Nominal operating power, W (at 20°C)	Max. allowable voltage, V DC
12	Max. 9.0	Min. 1.0	410±10%	28.8±10%	5.0	18
24	Max. 18.0	Min. 2.0	208±10%	115±10%	5.0	36

DIMENSIONS mm inch

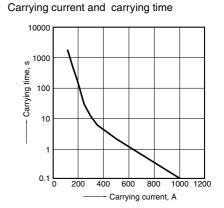
Mounting hole pattern (TOP VIEW)

Tolerance: ±0.1 ±.004

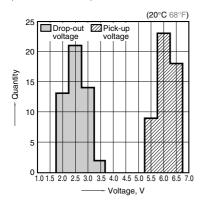
Tolerance:

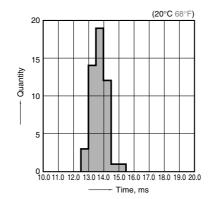

Max. 10mm .394inch: ±0.3 ±.012 10 to 50mm .394 to 1.969inch: ±0.6 ±.024 Min. 50mm 1.969inch: ±1.0 ±.039

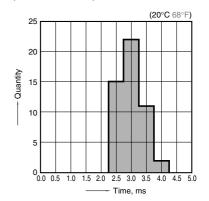
Notes: 1. Please be warned that contact terminals have polarity. There is no polarity in the coil input line.

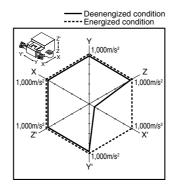

2. We will make separate consideration if a coil lead wire connector is desired.

REFERENCE DATA


1. Maximum value for switching capacity


2. Carrying current limit
Connection electric wire: 40mm²
Ambient temperature: 85°C 185°F
Standard for judgment: Relay contacts off when carrying finished.


3. Distribution of pick-up and drop-out voltages Sample: AEJ11012, 50 pcs.


4. Distribution of operate time Sample: AEJ11012, 50 pcs.

5. Distribution of release time Sample: AEJ11012, 50 pcs.

6. Functional shock resistance Sample: AEJ11012, 3 pcs. Half-wave pulse of sine wave: 11 ms Detection time: 10µs. Applied direction: 6 directions Applied cycle: Each of 3 cycles

NOTES

1. To ensure proper operation, the voltage applied to the coil should be the rated operating voltage of the coil. Also, be aware that the pick-up and drop-out voltages will fluctuate depending on the ambient temperature and operating conditions. 2. Heat, smoke, and even a fire may occur if the relay is used in conditions outside of the allowable ranges for the coil ratings, contact ratings, operating cycle lifetime, and other specifications. Therefore, do not use the relay if these ratings are exceeded. 3. If the relay has been dropped, the appearance and characteristics should always be checked before use. 4. This relay is for DC loads. Do not use it for AC load switching. 5. Make sure that the relay is wired correctly. Incorrect wiring may cause unexpected events or the generation

of heat or flames.

6. We recommend you use a surge absorbing element with a clamp voltage of 1.5 to 2.0 times the rated operating voltage for the relay coil drive circuit as a means for relay coil surge absorption. Please avoid the use of diodes, capacitors and resistors because they lead to degradation in cut-off performance.

7. Avoid mounting the relay in strong magnetic fields (near a transformer or magnet) or close to an object that radiates heat.

8. Electrical life

This relay is a high-voltage direct-current switch. In its final breakdown mode, it may lose the ability to provide the proper cut-off. Therefore, do not exceed the indicated switching capacity and life. (Please treat the relay as a product with limited life and replace it when necessary.)

In the event that the relay loses cut-off ability, there is a possibility that burning may spread to surrounding parts, so configure the layout so that the power is turned off within one second.

9. If the power is turned off and then immediately on after applying the rated voltage (current) continuously to the relay's coil and contact, the resistance of the coil will increase due to a rise in the coil temperature. This causes the pick-up voltage to rise, and possibly exceed the rated pick-up voltage. In these circumstances, take measures such as reducing the load current, limiting the duration of current flow, and applying a coil voltage higher than the rated operating voltage (quick start).

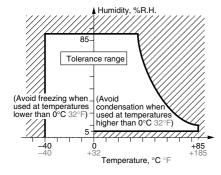
10. If you are using an inductive load (L load) such that L/R > 1 ms, add surge protection in parallel with the inductive load. If this is not done, the electrical life will decrease and cut-off failure may occur.

11. Be careful that foreign matter and oils and fats kind doesn't stick to the main terminal part because it is likely to cause a terminal part to give off unusual heat.

12. Avoid excessive load applied to the terminal in case of installing such as a bus bar etc., because it might give bad influence to the opening and closing performance.

Tighten each of the screws within the rated ranges given below. Main terminal (M6 screw): 6.0N·m to 8.0N·m Main unit mounting (M5 screw): 2.5N·m to 3.6N·m

EJ (AEJ)


13. Usage, transport and storage conditions

Ambient temperature, humidity, and atmospheric pressure during usage, transport, and storage of the relay:

1) Temperature: -40 to +85°C -40 to +185°F

2) Humidity: 5 to 85% RH (Avoid freezing and condensation.)

3) Atmospheric pressure: 85 to 106 kPa Temperature and humidity range for usage, transport, and storage:

4) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.

5) Freezing

Condensation or other moisture may freeze on the relay when the temperatures is lower than 0°C 32°F.

This causes problems such as sticking of movable parts or operational time lags.

6) Low temperature, low humidity environments

The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.