Derwent Top 100 Global Innovator 2020

Super Solution

Air Circuit Breakers

Super Solution

Codes and standards

UA Series are manufactured and tested in accordance with the following standards Low-Voltage Power Circuit Breaker

- ANSI C37.13
- ANSI C37.16
- ANSI C37.17
- ANSI C37.50
- UL 1066 (cULus Listed)
- CSA C22.2 No.31-10

Note) Throughout this document, the phrase "ANSI Certified" means the product meets the requirements of UL 1066 and ANSI C37

Contents

Overview	 4

- External configuration 14
- Internal configuration
 16
- Ordering 18
- Ratings 22
- Trip relays 24
- Accessories 50
- Electrical diagram ----- 76
- Dimensions 78

Premium Susol ACB meets your demands for high breaking capacity with full line-up up to 6000A, all in optimized frame sizes for panel design. Various accessories and connection methods realize user-friendly handling.

Susol ACB provides the total solution with an advanced trip relay for measurement, diagnosis, analysis, and communication as well as protective functions for absolute protective coordination and electric power monitoring system.

Susol Super Solution

0.0

UL listed/ANSI certified Low-Voltage Power Circuit Breaker UA series

0.00

US

6...

LS Super Solution series

- Modular design
- High (130kA) breaking capacity full line-up to 6000A
- Satisfy the needs for compact sized panels
- N-Phase conducting capacity 100%
- Interchangeable trip unit and rating plug

Safety

Monitor temperatures for safety (Optional)

- Careful selection of materials
- Zero arc space
- Perform discriminations between upstream and downstream levels

User convenience

Various connection types for main circuit terminals

- Easy installation of accessories
- Interchangeable Trip unit and Rating plug

Intelligent trip relay

Various advanced functions for protection, measurement, diagnosis, analysis, communication

Susol Manual Motor Starters

UL 1066

Susol Air Circuit Breakers

Susol Molded Circuit Breakers

•

Susol Magnetic Contactors & Overload Relays

Full line-up & Compact

Up to 6000A, Susol ACB provides a full line-up of 3 compact frame sizes. Enables users to design panels of optimal volume.

800~1600AF

W = 13.15" (334mm)

800~3200AF

W = 16.22" (412mm)

10

UAS-08/16D

356

08	800AF
16	1600AF

85kA at 508Vac W=13.15" (334mm) 3p, 16.50" (419mm) 4p

UAH-08~32E

08	800AF
16	1600AF
20	2000AF
25	2500AF
32	3200AF

100kA at 508Vac W=16.22" (412mm) 3p, 20.75" (527mm) 4p

3200~6000AF

- High breaking capacity: 85/100/130kA (at 508Vac)
- 3 ampere frame sizes: 1600/3200/6000AF
- N phase current conducting capacity: 100%

130kA

UAH- 32~60G

3200AF
4000AF
5000AF
6000AF

130kA at 508Vac W=30.91" (785mm) 3p, 39.96" (1015mm) 4p

Trip Relay (OCR)

Trip relays are classified according to function.

Trip relays are classified according to their uses and functions to maximize customers' satisfaction. Classified trip relays and easy installation.

- Protection: overload, short current, ground fault, earth leakage, under voltage, over voltage, under frequency, over frequency, reverse power, unbalance, etc
- Measurement: voltage, ampere, power, energy, frequency, power factor, harmonics, etc.
- Event & fault recording: Max. 256 events & faults
- Communication: Modbus/RS-485, Profibus-DP

Susol ACB trip relay, which can be interlocked with the breaker mechanism, provides the world's best protection. It improves the breaking capacity, enhances the ACB's life, and provides advanced functions - measurement, diagnosis, analysis, and communication.

Susol ACB Trip relay

- L/S/I/G/Thermal
- Self Power
- RTC Timer mounted
- Fault information (LED)

- L/S/I/G/Thermal
- ZSI
- ERMS
- Modbus/RS-485
- Profibus-DP
- Self Power
- AC/DC 100~250V
- DC 15~60V
- RTC timer mounted
- Fault recording (10EA)

- L/S/ I/G/Thermal(Continuous)
- UV/OV/OF/UF/rP/Vun/lun
- Measurement: V/A/W/Wh/F/PF
- Harmonics (63th), Waveform (S Type)
- ZSI
- ERMS
- Modbus/RS-485
- Profibus-DP
- AC/DC 100~250V
- DC 15~60V
- RTC timer mounted
- Event recording (256EA)
- Fault recording (256EA)
- Fault wave (S Type)

Trip relays series

N type (Normal)

• Self-power + Current protection

A type (Ammeter)

• Current meter + Current protection + DO control + Communication

P type (Power meter)

A type + Power meter +
 Voltage / Frequency / Unbalance protection

S type (Supreme) P type + Harmonics analysis (63 th) +

Fault wave recording

Rating Plug for selection of rated current and frequency

Rating Plug enables the changing rated current(In) without CT replacement Frequency selection switch: set to 50Hz or 60Hz

Cradle

- 1 Safety Shutter (ST)
- 2 Zero Arc Space (ZAS)
- 3 Cell Switch (CEL)
- 4 Door Interlock (DI)
- 5 MOC (Mechanical Operated Cell Switch
- 6 Mechanical Interlock (MI)
- 7 Mis-Insertion Prevention Device (MIP)
- 8 Safety Control Cover (SC)
- 9 Racking Interlock (RI)

Other___

- 10 Door Frame (DF)
- 11 Dust Cover (DC)
- 12 Lifting Hook (LH)
- **13** UVT Time Delay Controller (UDC)
- 14 Profibus-DP Communication Module
- 15 Remote I/O
- 16 Temperature Alarm

Connection and Installation

Diversified terminal connection methods of the ACB main circuit for users.

Multiple connections

Various installation methods

Standard connection

Vertical type

Horizontal type

Mixed connection

Horizontal / Vertical type

Vertical / Horizontal type

Horizontal / Front type

Vertical / Front type

Front / Horizontal type

Front / Vertical type

- Front connection type is available to be connected regardless of the depth of main circuit terminal and it is suited for panels with limited installation space.
- The vertical and horizontal type terminal are module type which can be adjusted by rotating the module 90 degrees.
- Please refer to the rating lists (Page 22~25) because the installation method varies according to the rated current.

External configuration

Susol

Fixed type ACB

Draw-out ACB (Cradle)

Terms

- 1 Trip relay
- 2 Counter
- OFF button
- ON button
- 6 Series name
- 6 Charge handle
- Rated name plate
- 8 Charge/Discharge indicator
- Olosed/Open indicator
- Orporation logo
- ① Arc cover (Zero Arc Space)
- B Cradle
- Oraw-out handle
- B Position indicator
- 6 Handle inserting hole
- Pad lock button
- Arc chute
- Control cover
- Is Fixed type bracket
- ② Rating plug

Cradle (Internal)

Cradle (Rear)

Terms

- Safety control cover
- 2 Draw-out handle
- 8 Position indicator
- 4 Handle inserting hole

6 Pad lock button

- 6 Connecting conductor (Line side)
- Connecting conductor (Load side)

Control power and

Main nameplate

[Acronym explanation]

LS	Susol									
Low Voltage AC Pow	Low Voltage AC Power Circuit Breaker									
Frame Size :										
Poles :	CUUS									
Frequency : 50/60	Hz LISTED									
UL 1066 / ANSI C37.13										
Rated Maximum Voltage (V) 254 508 635									
Rated Short Circuit Current	(kA)									
Rated Short Time Current (H	(A)									
Cat.										
MFG. Date :										
Serial No. :										
	MADE IN KOREA									

[Secondary nameplate]

ACCESSORIES
Motor charge
Closing coil
Shunt tripping coil
A surflie and a surflie is a
Auxiliary switches
OCB Control source
Alarm switch
Digital Trip Relay(OCR)
Alarm(LSIC) Basat
Alami(LSIG) Reset
- Zone Selective Interlocking
Long colocity interfering
- Communication
- Earth/Leakage
Temperature concer
remperature sensor
Available Adaptor
Not For Use As Service Equipment
Instruction manual 79563466001

Explanation of terminologies

- Motor charge ——Closing coil
- Shunt tripping coil ______ terminal No.
- Auxiliary switches: Contact specification and terminal No.
- Under voltage trip: UVT terminal No.
- OCR control source: Trip relay control power
- Alarm switch: Alarm and terminal No.
- Digital trip relay: Switching diagram
- Z.S.I: Input/Output terminal No.
- Reset: LED/LCD reset
- Communication: Communication and terminal No.
- Voltage module: Phase voltage and symbol
- Earth/Leakage: Ground fault / Earth leakage input terminal No.

Internal configuration

Terms

- 1 Arc chute
- 2 Aux. switch control terminal
- Ontrol power supply terminal
- 4 Trip relay control terminal
- 6 Carrying grip
- 6 Shunt coil or UVT coil
- Mechanism
- 8 Main body
- Ounter
- 0 Shunt coil
- Closing coil
- Motor Ass'y
- B Aux. switch
- Olosed button
- Open button
- 🚯 MTD base
- 🕼 Trip relay
- B Front cover

Terms

Ordering

Susol

Breaker and accessories

	M1			01)1		Η	X	N	GO		U	1	AL	
	Motor oper	ator				Shur	nt trip				Trip	relay				Optior	1
MA	None (Manua	al opera	ted)		D0	None					Refer to	page	21				
M1	AC/DC 100)V~12	5V		D1	AC/DC	; 100V	~125V						-			
M2	AC/DC 200)V~25	VC		D2	AC/DC	200V	~250V									
M3	DC 125V				D3	DC 12	5V										
M4	DC 24V~30	VC			D4	DC 24	√~30V										
M5	DC 48V~60	VC			D5	DC 48	√~60V										
M8	AC 48V				D7	AC 48\	/										
																_	
			Closi	ing co	il			Chargin	ig/Au	xiliary swi	tch			U١	νT		
		D0	None				HX	High cap	pacity	/ OFF cha	rge/5a5b		U0	None			
		D1	AC/DC	C 100\	/~125\	/	HC	High cap	pacity	ON char	ge/5a5b		U1	AC/DC	100V~125V		
		D2	AC/DC	200\	/~250\	/	GX	High cap	pacity	/ OFF cha	rge/3a3b		U2	AC/DC	200V~250V		
		D3	DC 12	5V			GC	High cap	pacity	ON char	ge/3a3b		U3	DC 125	δV		
		D4	DC 24	V~30\	/								U4	DC 24\	/~30V		
		D5	DC 48	V~60\	/	_							U5	DC 48\	/~60V		
		D7	AC 48	V									U6	AC 380	V~480V		
													U7	AC 48V	/	_	

Code	Description			Description			
AL	AL1+MRB			K1	Key lock		
A1	AL1+MRB +RE	S (AC110~130V) *AC only	K2	K2	Key Interlock set		
A2	AL1+AL2 +MRE	3	K3	K3	Key Interlock double		
A3	AL1+MRB +RE	S (DC110~125V) *DC only	K5	K5	Profalux lock (CAMLOCK type)		
A4	AL1+MRB +RE	S (AC200~250V) *AC only	K6	K6	Kirkkey lock (CAMLOCK type)		
A5	AL1+MRB +Aut	to reset	K7	K7	Kirkkey lock (CN22 type)		
A6	a AL1+AL2 +MRB +Auto reset			RCS	Ready to close switch		
A7	7 AL1+MRB +RES (DC110~125V) +Auto reset *DC only			ТМ	Temperature monitoring		
A8	AL1+MRB +RE	S (AC200~250V) +Auto reset *AC only	H1		AC/DC 100V ~125V, Double shunt coil		
A9	AL1+MRB +RE	S (AC110~130V) +Auto reset *AC only	H2		AC/DC 200V ~250V, Double shunt coil		
S	CS2	CS2 Charge switch communication		SHT2 Note 2)	DC 125V, Double shunt coil		
В	В	Lockable On/Off button cover			DC 24V ~30V, Double shunt coil		
М	MI	Mechanical interlock	H5		DC 48V ~60V, Double shunt coil		
D	DI or MOC	Door interlock or MOC (Mechanism operated cell switch)	H7		AC 48V, Double shunt coil		

NO1	A4 (AL1+MRB +RES(AC200~250V))+B(Lockable On/Off button cover)+K(Key lock)+R(Ready to close switch)+M(Mechanic interlock)+
INUT	E(Spring auto release)
NIOO	AL (AL1+MRB)+K(Key lock(OFF lock))+R(Ready to close switch)+D(Door interlock or MOC)+H1(AC/DC 100V ~ 130V,
INU2	Double shunt coil)+E(Spring auto release)
N03	B(Lockable On/Off button cover)+K2(Key interlock set)+R(Ready to close switch)+T(Temperature monitoring)
N04	A4(AL1+MRB+RES(AC200~250V))+B(Lockable On/Off button cover)+K(Key lock(OFF lock))+M(Mechanical interlock)+T(Temperature monitoring)
NIOE	A1(AL1+MRB+RES110~130V)+B(Lockable On/Off button cover)+K(Key lock(OFF lock))+R(Ready to close switch)+
1005	M(Mechanical interlock)+T(Temperature monitoring)
N06	A2(AL1+AL2+MRB)+K(Key lock(OFF lock))+R(Ready to close switch)+T(Temperature monitoring)

Note) 1. * Codes for over 5 optional accessories are composed separately 2. UVT and SHT2 can not be selected together. Select one of two. 3. C(counter) is provided as standard.

Ordering

Susol

Adapter (Cradle)

3200AF

5000AF

6000AF

S32E

S50G

S60G

	н		E		S
Tei	minal configuration		Shutter		
н	Horizontal type	F	Without		
V	Vertical type	L	safety shutter		
N /	Line: Horizontal	F	With safety		
IVI	Load: Vertical	Г	shutter		
N	Line: Vertical				
IN	Load: Horizontal			Othe	v ontiono
Ρ	Front type			Othe	eroptions
G	Horizontal-con type			0	Are cover
W	Vertical-con type				AIC COVER

* Terminals for P type must be ordered separately

* G and W types can be applicable to S16D (1600AF) only.

Note) The corresponding Breaker Adapter

Br	Adapter	
UAS-08D	UAS-08W	S16D
UAS-16D	UAS-16W	3100
UAH-08E	UAH-08X	
UAH-16E	UAH-16X	S20E
UAH-20E	UAH-20X	1
UAH-25E	UAH-25X	S25E
UAH-32E	UAH-32X	S32E
UAH-32G	UAH-32Z	
UAH-40G	UAH-40Z	S50G
UAH-50G	UAH-50Z	
UAH-60G	UAH-60Z	S60G

Rating plug

	Rating plug classfication				ACB ampere frame							
Rating	For none NCT type	For NCT type	Rating	800A	1600A	2000A	2500A	3200A	4000A	5000A	6000A	
	73263466352	73263466372	400A									
	73263466353	73263466373	600A	400A~								
	73263466354	73263466374	630A	800A								
	73263466355	73263466375	800A									
	73263466356	73263466376	1000A		0004							
	73263466357	73263466377	1200A		800A~		1200A~ 2500A					
	73263466358	73263466378	1250A		TOOUA	2000A~						
	73263466359	73263466379	1600A			2000A		16004				
code	73263466360	73263466380	2000A									
	73263466361	73263466381	2500A					1600A~		2500A~		
	73263466362	73263466382	3000A					02004	2000A~		3000A~	
	73263466363	73263466383	3200A						4000A			
	73263466364	73263466384	3600A							5000A		
	73263466365	73263466385	4000A								6000A	
	73263466366	73263466386	5000A									
	73263466367	73263466387	6000A									

* A rating plug ranging from 50 to 100% of the ACB ampere frame should be used.

* The minimum value of the OCR self-power supply is based on the CT rating, not the rating plug rating.

Trip relay

- Ground fault, earth leakage and pre-trip alarm functions are mutually exclusive.
- Substrate and pre-trip alarm functions are inducing exclusive.
 Functions like Metering, Communication, ZSI, Remote reset and Digital output are NOT available only under Self-power condition.
- 4. P and S types require voltage module to be purchased separately.

Ratings for UL Listed/ANSI Certified Susol UA Circuit Breakers

Susol

		Туре		
		AF		
Rated current (In max)	(A)			at 40°C
Rated current	(A)			at 40°C
Rated maximum voltage	0.0			
Frequency	(V) (H 7)			
Number of poles	(F12) (D)			
Tuno of trip rolay (Electron	(F)			
Deted about airquit aurran		\\/;+la	AC	6051/
	L (KA)	instantanagua	AC	<u> </u>
(Syrn.)		Instantaneous		
				254V
ANSI 037.13		instantanagua	AC	635V
		Instantaneous		05.41/
Data d also at time a summert	(1.A)			254V
Rated short time current	(KA)	Marine we total h		
Operating time (t)	(ms)		preaking time	
1.16	(1:)	Maakaasiaak		
LITE CYCIE ACB	(time)	Iviecnanical		ce
			With maintenance	
		Electrical	Without maintenand	ce
14/.1.1	11- (1)	Duralla	With maintenance	0.0
vveignt	ID (KG)	Drawout type	Main Body	<u>3P</u>
			with Cradle	4P
			Only Cradle	<u>3P</u>
				4P
		Fixed type	Motor charging	<u>3P</u>
<u> </u>	<u> </u>	• ()	type	4P
External dimension	Draw-out type	in (mm)	H×W×D	3P
_				4P
н				
L w C	Fixed type	in (mm)	H×W×D	3P
				4P
Enclosure dimension		in (mm)	H×W×D	3P
				4P

Su	sol
UAS-	
08	16
800	1600
	800
400	1000
600	1200
630	1250
800	1600
254V/50	8V/635V
50/	′60
3P/	′4P
N, A, P, S	S (4 type)
6	5
8	5
8	5
6	5
6	5
6	5
50	5
80	ms
12 /	500
2.8	00
-	
154	(70)
187	(85)
71 ((32)
84 ((38)
77 ((35)
99 ((45)
16.93×13.	15×16.02
(430×33	34×407)
16.93×16	.5×16.02
(430×41	9×407)
11.81×11.	81×11.61
(300×30	00×295)
11.81×15.	16×11.61
(300×38	35×295)
19.69×15.	75×13.39
(500×40	00×340)
19.69×19.	69×13.39
(500×50	JU×340)

		Susol									
		UAH-DDE									
08	16	20	25	32							
800	1600	2000	2500	3200							
400	800	1000	1200	1600							
600	1000	1200	1250	2000							
630	1200	1250	1600	2500							
800	1250	2000	3000								
	1600	2000	2500	3200							
254V/508V/635V											
50/60											
		3P/4P	-								
	1	N, A, P, S (4 type	e)								
		85									
		100									
		100									
		85									
		85									
		85									
		85									
		50ms									
		80ms									
	12,	500		12,500							
		-		-							
	2,8	300		1,000							
	-	-		-							
	214 (97)		245 (111)	326 (148)							
	269 (122)		309 (140)	414 (188)							
	99 (45)		123 (56)	205 (93)							
	121 (55)		152 (69)	256 (116)							
	101 (46)		110 (50)	196 (89)							
	126 (57)		137 (62)	249 (113)							
	16	.93×16.22×16	.02								
	(430×412×407)								
	16	.93×20.75×16	.02								
	(430×527×407)								
	11.	.81×14.88×11	.61								
	(300×378×295)								
	11.	.81×19.41×11	.61								
	($300 \times 493 \times 295$)								
	19	.09 × 19.69 × 13.	.39 N								
	($500 \times 500 \times 340$	20								
	19	$109 \times 24.21 \times 13$.59								
	(500×615×340)								

Susol										
	UAH-	□□G								
32	40	50	60							
3200	4000	5000	6000							
1600	2000	2500	3000							
2000	2500	3000	3200							
2500	3000	3200	3600							
3000	3200	3600	4000							
3200	3600	4000	5000							
	4000	5000	6000							
	254V/50	8V/635V								
	50/	60								
	3P/	/4P								
	N, A, P, S	6 (4 type)								
	10	00								
	13	30								
	13	30								
	10	00								
	10	00								
	10	00								
	10	00								
	50	ms								
	90	ms								
	10,0	000								
	-	-								
	1,0	00								
		-								
	489 (222)		709 (321)							
	626 (284)		919 (417)							
	276 (125)		482 (218)							
	355 (161)		630 (286)							
	227 (103)		433 (196)							
	287 (130)		561 (255)							
	18.11×30	.91×16.02								
	(460×78	35×407)								
	18.11×39	.96×16.02								
	(460×10	15×407)								
	11.81×29	.57×11.61								
	(300×75	51×295)								
	11.81×38	.62×11.61								
	(300×98	31×295)								
	31.5×32.4	48×13.39								
	(800×82	25×340)								
	31.5×41.	54×13.39								
	(800×10	55×340)								

Trip relay(OCR)

DIGITAL TRIP RELAY

In=1600 A

Analog trip function interlocked with mechanism enhances the durability as well as the breaking capacity of the ACB.

Zone selective interlocking function makes the protective coordination more simple and thermal memory can be applied to various loads.

Contents

Trip relay types	25
N type: ^r Normal」 type	26
A type: 「Ammeter」 type	28
P type: ^r Power meter」 type	30
S type: 「Supreme meter」 type	32
Operation characteristic	34
Measurement function	36
Man machine interface	37
Protection element setting	38
Measurement element display	39
Characteristic curves	40
ZSI - Zone Selective Interlocking	45
Remote reset and digital I/O	46
Communication	47
Event & fault recording	48
System information	48
System block diagram	49

Susol

Trip relay types

Classification	N type	A type	P type	S type
Externals				
Current protection	•L/S/I/G	 L / S / I / G(or Earth leakage) Thermal ZSI(Protective coordination) ERMS 	L / S / I / G(or Earth leakage) Thermal(Continuous) ZSI(Protective coordination) ERMS	 L / S / I / G(or Earth leakage) Thermal(Continuous) ZSI(Protective coordination) ERMS
Other protection	-	Earth leakage (Option)	Earth leakage(Option) Over/Under voltage Over/Under frequency Unbalance(Voltage/Current) Reverse power	 Earth leakage(Option) Over/Under voltage Over/Under frequency Unbalance(Voltage/Current) Reverse power
Measurement function	-	• Current (R / S / T / N)	 3 Phase Voltage/Current RMS/Vector Power(P, Q, S), PF(3-Phase) Energy(Positive/Negative) Frequency, Demand 	3 Phase Voltage/Current RMS/Vector Power(P, Q, S), PF(3-Phase) Energy(Positive/Negative) Frequency, Demand Voltage/Current harmonics (1st-63th) 3 Phase Waveforms THD, TDD, K-Factor
Fine adjustment	-	-	Fine adjustment for long/short time delay/instantaneous/ ground	Fine adjustment for long/short time delay/instantaneous/ ground
Pre Trip Alarm	-	-	Overload protection relays DO (Alarm) (Ground fault is not available when using Pre trip alarm)	Overload protection relays DO (Alarm) (Ground fault is not available when using Pre trip alarm)
Digital Output	-	• 3DO (Fixed) • L, S/I, G Alarm	 3DO (Programmable) Trip, Alarm, General	 3DO (Programmable) Trip, Alarm, General
IDMTL setting	-	-	Compliance with IEC60255-3 SIT, VIT, EIT, DT	Compliance with IEC60255-3 SIT, VIT, EIT, DT
Communication	-	• Modbus/RS–485 • Profibus–DP	 Modbus / RS-485 Profibus-DP 	Modbus / RS-485 Profibus-DP
Power supply	Self Power Power source works over 20% of load current.	 Self Power Power source works over 20% of load current. External power source are required for comm. AC/DC 100~250V DC 15~60V 	AC/DC 100~250V DC 15~60V Basic protection ful is still under no without con	AC/DC 100~250V DC 15~60V Inction(L / S / I / G) ormal operation htrol power.
RTC timer	-	Available	Available	Available
LED for trip info.	Long time delay Short time delay/Instantaneous Ground fault	Long time delay Short time delay/Instantaneous Ground fault 10 records	Long time delay Short time delay/Instantaneous Ground fault 256 records	Long time delay Short time delay/Instantaneous Ground fault 256 records
Fault recording	-	(Fault/Current/Date and Time)	(Fault/Current/Date and Time)	Last fault wave recording (voltage, current are recorded in 3-phase, and can be read only by communication)
Event recording	-	-	256 records(Content, Status, Date)	256 records(Content, Status, Date)
Operating button	Reset button	• Reset, Menu Up/Down, Tap, Enter	 Reset, Menu Up/Down, Tap, Enter 	 Reset, Menu Up/Down, Tap, Enter

Each OCR type has Battery in itself.

1. Battery lifespan

1) When turned off: 14~28years

2) When using 1 LED consecutively or turned off: 7~14days

2. The display minimum range of OCR current 1) A type: When more 15% than rated current (In) 2) P/S type: When more 12% than rated current (In) * L/S/I/G(or Earth leakage) configuration as standard Unable to select ground fault and earth leakage simultaneously

LSELECTRIC | 25

Susol

N type: ^rNormal_J type

- Optimized protection function
- Overload protection
 Long-time delay
 - Thermal
- Short-circuit protection
 - Short-time delay / Instantaneous
 - I²t On/Off optional (for short-time delay)
- Ground fault protection
 - I²t On/Off optional
- Self-Power

Susol

Protection

Long time											
Current setting (A)	lu = ln>	<	0.5	0.6	0.7	0.8	0.9	1.0			
	$Ir = Iu \times$		0.8	0.83	0.85	0.88	0.9	0.93	0.95	0.98	1.0
Time delay (s)	tr@(1.5	×lr)	12.5	25	50	100	200	300	400	500	Off
Accuracy: ±15% or	tr@(6.0	tr@(6.0×lr)		1	2	4	8	12	16	20	Off
below 100ms	tr@(7.2	×lr)	0.34	0.69	1.38	2.7	5.5	8.3	11	13.8	Off
Short time											
Current setting (A)	lsd = lr×		1.5	2	3	4	5	6	8	10	Off
Time delay (s)	to al	I ² t Off	0.05	0.1	0.2	0.3	0.4				
Accuracy: ±10% or	tsa	I²t On @(10×Ir)		0.1	0.2	0.3	0.4				
below 50ms		Min. Trip	20	00	160	000					
	(12+ 04)	Time(ms)	20	60	160	200	300				
	(FLOII)	Max. Trip	80	1/10	240	340	440				
		Time(ms)	00	140	240	040	440				
Instantaneous											
Current setting (A)	$II = In \times$		2	3	4	6	8	10	12	15	Off
Tripping time			belov	v 50m	5						
Ground fault											
Pick-up (A)	lg = ln>	<	0.2	0.3	0.4	0.5	0.6	0.7	0.8	1.0	Off
Time delay (s)	ta	I ² t Off	0.05	0.1	0.2	0.3	0.4				
Accuracy: $\pm 10\%$ (lg ≥ 0.4 ln)	g	l²t On @(1×ln)		0.1	0.2	0.3	0.4				
±20%(lg<0.4ln)		Min. Trip	20	80	160	260	360				
or below 50ms	(l²t Off)	Time(ms)	20	00	100	200	000				
	(1 1 011)	Max. Trip Time(ms)	80	140	240	340	440				

Susol

A type: 「Ammeter」 type

- Overload protection
 - Long-time delay
 - Thermal
- Short-circuit protection
 - Short-time delay/Instantaneous
 - I²t On/Off optional (for short-time delay)
- Ground fault protection
 - I²t On/Off optional
 - Trip/Alarm selectable (need external power)
 - Blocking Time (0~60s)
 - Does not detect ground fault during Blocking time.
- Realization of protective coordination by ZSI
 - (Zone Selective Interlocking)
 - Disable/Enable Selectable
- High-performance and high-speed MCU built-in - Accurate measurement with tolerance of 1.0%

- Measurement and Display Function
 High detailed measurement for current
 character LCD type
- Fault recording
 - Records Max. up to 10 fault information about fault type, fault phase, fault data, occurrence time of fault
- SBO (Select Before Operation)
- High reliability for control and setting change method
 3 DO(Digital Output)
- Fixed
- Communication
- Modbus/RS485
- Profibus-DP
- ERMS
 - Arc Flash Reduction
 - Instantaneous setting value is minimized. (2*In)

Susol

Protection

Long time											
Current setting (A)	lu = ln:	×	0.5	0.6	0.7	0.8	0.9	1.0			
	lr = lu≻	<	0.8	0.83	0.85	0.88	0.9	0.93	0.95	0.98	1.0
Time delay (s)	tr@(1.5	×lr)	12.5	25	50	100	200	300	400	500	Off
Accuracy: $\pm 15\%$ or	tr@(6.0	×lr)	0.5	1	2	4	8	12	16	20	Off
below 100ms	tr@(7.2	tr@(7.2×lr)		0.69	1.38	2.7	5.5	8.3	11	13.8	Off
Short time											
Current setting (A)	Isd = Ir	lsd = lr×		2	3	4	5	6	8	10	Of
Time delay (s)	tod	I ² t Off	0.05	0.1	0.2	0.3	0.4				
Accuracy: ±10% or	tsa	I²t On @(10×lr)		0.1	0.2	0.3	0.4				
below 50ms		Min. Trip	20	0 80 160 00	000	20 260					
	(12+ ○ ff)	Time(ms)	20	80	100	200	300				
	(1 1 01)	Max. Trip	80	1/0	240	340	440				
		Time(ms)	80	140	240	340	440				
Instantaneous											
Current setting (A)	li = ln×		2	3	4	6	8	10	12	15	Off
Tripping time			belov	v 50m	S						
Ground fault											
Pick–up (A)	lg = ln:	×	0.2	0.3	0.4	0.5	0.6	0.7	0.8	1.0	Off
Time delay (s)	ta	I ² t Off	0.05	0.1	0.2	0.3	0.4				
Accuracy: $\pm 10\%$ (lg \geq 0.4ln)		I²t On @(1×In)		0.1	0.2	0.3	0.4				
±20%(lg<0.4ln)	Min. Trip		20	80	160	260	360				
or below 50ms	(I ² t Off)	Time(ms)	20	00	100	200	000				
	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Max. Trip Time(ms)	80	140	240	340	440				

lsd a ∩tsd ↓↓ li

Earth leakage (Option)											
Current setting (A)	l∆n		0.5	1	2	3	5	10	20	30	Off
Time delay (ms)		Alarm	140	230	350	800	050				
Accuracy: ±15%	.+	Time(ms)	140	230	000	000	350				
	ΔL	Trip	1 10	020	250	0 000	0				
		Time(ms)	140	230	330	000					

Note) Current setting values are secondary current of the external CT. Recommended not to use current setting values more than 5A.

tł

Susol

P type: ^rPower meter_J type

- Overload protection
 - Long-time delay
- Thermal
- Short-circuit protection
 - Short-time delay/Instantaneous
 - I²t On/Off optional (for short-time delay)
- Ground fault protection
 - I²t On/Off optional
 - Trip/Alarm selectable (need external power)
 - Blocking Time (0~60s)
 - Do not ground fault detect during Blocking time
- Protection for Over voltage/Under voltage/Over frequency (Under frequency) (Under voltage/Over
- frequency/Under frequency/Unbalance/Reverse power
 Realization of protective coordination by ZSI (Zone Selective Interlocking)
 - Disable / Enable Selectable
- Fine-adjustable setting by knob and key
- ERMS
 - Arc Flash Reduction
 - Instantaneous setting value is minimized. (2*In)

- IDMTL setting (SIT, VIT, EIT, DT curve) - Basic setting : "None". Thermal curve.
- Measurement and Display Function

 High detailed measurement for 3 phase current/Voltage/Power/Energy/Phase
 - angle/Frequency/PF/Demand
 - 128 x 128 Graphic LCD
- Indicates current/voltage Vector Diagram and Waveform
- Fault recording
 Records Max. up to 256 fault information about fault type, fault phase, fault value, occurrence time of fault
- Event recording
 - Records events of device related to setting change, operation and state change. (Max. up to 256)
- SBO (Select Before Operation)
- High reliability for control and setting change method
 3 DO(Digital output)
- Programmable for alarm, trip and general DO
- Communication
- Modbus/RS485
- Profibus-DP

① Graphic LCD: Indication of measurement and information

2 LED: Indication of trip info. and overload state

Alarm SP Comm Comm: LED indicating comm. state (Blinks when running) Ig: LED indicating ground-fault Isd/Ii: LED indicating short-time or instantaneous tripping Ir: LED indicating long-time delay SP: Self-protection and battery test LED Alarm: LED indicating an overload (Turns on above 90%, blinks above 105%) 3 Key: Move to menu or reset ∇ Reset/ESC: Fault reset or ESC from menu Enter: Enter into secondary menu or setting input Up/Down: Move the cursor up/down on screen or increase/decrease a setting value Right/Left: Move the cursor or setting right/left on screen (Rotation) Menu: Menu display ↔ Measurement display (4) Ir: Long-time current setting, tr: Long-time tripping delay setting ⑤ Isd: Short-time current setting, tsd: Short-time tripping delay setting 6 li: Instantaneous current setting ⑦ Ig: Ground fault current setting, tg: Ground fault tripping delay setting

- (8) Test terminal: OCR test terminal (Connected with OCR tester)
- Rating plug
 - Rated current setting (45~100% of the AF)
 - Frequency selectable(60Hz/50Hz)

Susol

Over

Under

frequency

frequency

Protection

Long time											
Current setting (A)	$lr = ln \times$	·	0.4	0.5	0.6	0.7	0.8	0.9	1.0		
Time delay (s)	tr@(1.5	×lr)	12.5	25	50	100	200	300	400	500	Off
Accuracy: $\pm 15\%$ or	tr@(6.0×lr)		0.5	1	2	4	8	12	16	20	Off
below 100ms	tr@(7.2	tr@(7.2×lr)		0.69	1.38	2.7	5.5	8.3	11	13.8	Off
Short time											
Current setting (A)	$Isd = Ir \times$		1.5	2	3	4	5	6	8	10	Off
Time delay (s)	t a al	I ² t Off	0.05	0.1	0.2	0.3	0.4				
Accuracy: ±10% or	tsa	l²t On @(10×lr)		0.1	0.2	0.3	0.4				
below 50ms		Min. Trip	20	00	160	260	000 000				
	(I2+ ∩ff)	Time(ms)	20	00	100	200	300				
	(Ft OII)	Max. Trip	80	140	240	240	440				
		Time(ms)	80	140	240	340	440				
Instantaneous											
Current setting (A)	$li = ln \times$		2	3	4	6	8	10	12	15	Off
Tripping time			belov	v 50ms	3						
Ground fault											
Pick–up (A)	lg = ln>	<	0.2	0.3	0.4	0.5	0.6	0.7	0.8	1.0	Off
Time delay (s)	ta	l ² t Off	0.05	0.1	0.2	0.3	0.4				
Accuracy: $\pm 10\%$ (lg \geq 0.4ln)	ig	l²t On @(1×In)		0.1	0.2	0.3	0.4				
±20%(lg<0.4ln)	±20%(lg<0.4ln) Min.		20	80	160	260	360				
or below 50ms	(l ² † ∩ff)	Time(ms)	20	00	100	200	360				
	(Pt Off) Max. Trip		80	140	240	340	440				
		Time(ms)	50	140	270	540	-1-10				

Ear	th leakage (Option)											
С	urrent setting (A)	l∆n		0.5	1	2	3	5	10	20	30	Off
Ti Ad	ime delay (ms) Accuracy: ±15%	÷	Alarm Time(ms)	140	230	350	800	950				
		Δt	Trip Time(ms)	140	230	350	800					

Note) Current setting values are secondary current of the external CT. Recommended not to use current setting values more than 5A.

60Hz UF_Pick-up ~ 65

50Hz 45Hz ~ OF_Pick-up

UF_Pick-up ~ 55

55Hz ~ OF_Pick-up

50Hz

60Hz

PTA(Pre Trip Alarm)											
Current setting (A)	$Ip = Ir x \cdots$	0.6	0.65	0.7	0.75	0.8	0.85	5 0.9	0.95	1	
Time delay (s)	tn@(1.2∨ln)	1	5	10	15	20	25	30	25	Off	
Accuracy: ±15%	tp@(1.2×1p)	1	1 5		15	20	23	30	00	Oli	
		Diale						Tim	a dalay/		
Other protection)					TIM	e delay(
	Setting range	Step	A	ccura	су	Set	ting ra	nge	Step Accu		iracy
Under voltage	80V ~ 0V_Pick-up	1V	±5%								
Over voltage	UV_Pick-up ~ 980V	1V	±5%	±5%			2~40s	ec			
Voltage unbalance	6% ~ 99%	1%	±2.59	% or (*:	±10%)						
Reverse power	10~500 kW	10~500 kW 1kW		ó D		0	2 400	~~			
Over power	500~5000 kW	1kW	±10%	ó		_ 0.	2~405	50	0 1000	+01	1000
Current unbalance	6% ~ 99%	1%	±2.59	% or (*:	±10%)				U.ISEC		Sec

 $\pm 0.1 \text{Hz}$

 $\pm 0.1 \text{Hz}$

 $\pm 0.1 \text{Hz}$

 $\pm 0.1 \text{Hz}$

1.2~40sec

1Hz

1Hz

1Hz

1Hz

Susol

S type: Supreme meter, type

- Overload protection
 - Long-time delay
 - Thermal
- Short-circuit protection
 - Short-time delay/Instantaneous
 - I²t On/Off optional (for short-time delay)
- Ground fault protection
 - I²t On/Off optional
 - Trip/Alarm selectable (need external power)
 - Blocking Time (0~60s)
 - Do not ground fault detect during Blocking time
- Protection for Over voltage/Under voltage/Over
- frequency/Under frequency/Unbalance/Reverse power Realization of protective coordination by ZSI
 - (Zone Selective Interlocking)
 - Disable/Enable
- Fine-adjustable setting by knob and Key
 IDMTL setting (SIT, VIT, EIT, DT curve)
- Basic setting : "None". Thermal curve.
- ERMS
 - Arc Flash Reduction
 - Instantaneous setting value is minimized. (2*In)

- Measurement and Display Function
 - High detailed measurement for 3 phase current/Voltage/ Power/Energy/Phase angle/Frequency/PF/Demand
 - 128 x 128 Graphic LCD
- Indicates current/voltage Vector Diagram and Waveform
- Fault recording
 - Records Max. up to 256 fault information about fault type, fault phase, fault value, occurrence time of fault - Fault wave recording: records the latest fault wave
- Event recording
 - Records events of device related to setting change, operation and state change. (Max. up to 256)
- SBO (Select Before Operation)
- High reliability for control and setting change method Power quality analysis
 - Measurement for 1st~63th harmonics
 - THD, TDD, k-Factor
 - Voltage/current waveform capture
- 3 DO(Digital output)
 - Programmable for alarm, trip and general DO
 - Communication
 - Modbus/RS485
 - Profibus-DP

(1) Graphic LCD: Indication of measurement and information

② LED: Indication of trip info. and overload state

- 6 li: Instantaneous current setting
- ⑦ lg: Ground fault current setting, tg: Ground fault tripping delay setting
- ® Test terminal: OCR test terminal (Connected with OCR tester)
- Rating plug
 - Rated current setting (45~100% of the AF)
 - Frequency selectable(60Hz/50Hz)

Susol

Protection

Long time											
Current setting (A)	$lr = ln \times$		0.4	0.5	0.6	0.7	0.8	0.9	1.0		
Time delay (s)	tr@(1.5	×lr)	12.5	25	50	100	200	300	400	500	Off
Accuracy: $\pm 15\%$ or	tr@(6.0	×lr)	0.5	1	2	4	8	12	16	20	Off
below 100ms	tr@(7.2	×lr)	0.34	0.69	1.38	2.7	5.5	8.3	11	13.8	Off
Short time											
Current setting (A)	lsd = lr×		1.5	2	3	4	5	6	8	10	Off
Time delay (s)	tod	l ² t Off	0.05	0.1	0.2	0.3	0.4				
Accuracy: ±10% or	tsa	l²t On @(10×lr)		0.1	0.2	0.3	0.4				
below 50ms	(10) 0(0)	Min. Trip Time(ms)	20	80	160	260	360				
	(I ² t Off)	Max. Trip Time(ms)	80	140	240	340	440				
Instantaneous											
Current setting (A)	$Ii = In \times$		2	3	4	6	8	10	12	15	Off
Tripping time			belov	v 50ms	6						
Ground fault											
Pick-up (A)	lg = ln>	<	0.2	0.3	0.4	0.5	0.6	0.7	0.8	1.0	Off
Time delay (s)	ta	I ² t Off	0.05	0.1	0.2	0.3	0.4				
Accuracy: $\pm 10\%$ (lg ≥ 0.4 ln)	ig	l²t On @(1×In)		0.1	0.2	0.3	0.4				
$\pm 20\%$ (lg<0.4ln) or below 50ms	(I²t Off)	Min. Trip Time(ms)	20	80	160	260	360				
		Max. Trip Time(ms)	80	140	240	340	440				

Ea	rth leakage (Option)											
C	Current setting (A)	l∆n		0.5	1	2	3	5	10	20	30	Off
T A	Time delay (ms) Accuracy: ±15%	Al . Ti	Alarm Time(ms)	140	230	350	800	950				
		Δt	Trip Time(ms)	140	230	350	800					

Note) Current setting values are secondary current of the external CT. Recommended not to use current setting values more than 5A.

6% ~ 99%

50Hz 45Hz ~ OF_Pick-up

UF_Pick-up ~ 65

UF_Pick-up ~ 55

55Hz ~ OF_Pick-up

Current unbalance

60Hz

50Hz

60Hz

Over

Under

frequency

frequency

PTA(Pre Trip Alarm)													
Current setting (A)	$Ip = Ir x \cdots$		0.6	0.65	0.7	0.75	0.8	0.85	0.9	0.95	1		
Time delay (s) Accuracy: ±15%	tp@(1.2×Ip)		1	5	10	15	20	25	30	35	Off		
	Pick-up						Time delay(s)						
Other protection	Setting range	Step	Accuracy			Set	ting ra	nge	Step	Accu	racy		
Under voltage	80V ~ 0V_Pick-up	1V	±5%										
Over voltage	UV_Pick-up ~ 980V	1V	±5%			1.	2~40s	ec		1			
Voltage unbalance	6% ~ 99%	1%	±2.59	% or (*:	±10%)					1			
Reverse power	10~500 kW	1kW	±10%	±10%		0	0.0 400			1			
Over power	500~5000 kW	1kW	±10%	±10%			2~405	50	0 1000	+0-	1000		
0 1 1 1	001 0001	10/		1 14					0.1580	<u> </u>	1260		

±2.5% or (*±10%)

1.2~40sec

 $\pm 0.1 \text{Hz}$

 $\pm 0.1 \text{Hz}$

 $\pm 0.1 \text{Hz}$

 $\pm 0.1 \text{Hz}$

1%

1Hz

1Hz

1Hz

1Hz

Susol

Operation characteristics

Long-time delay (L)

The function for overload protection which has time delayed characteristic in inverse ratio to fault current.

- 1. Standard current setting knob: Ir
 - 1) Setting range in P type and S type: (0.4-0.5-0.6-0.7-0.8-0.9-1.0)×In
 - 2) Setting range in N type and A type: (0.4 ${\sim}1.0){\times}In$
 - lu: (0.5-0.6-0.7-0.8-0.9-1.0)×ln
 - Ir: (0.8-0.83-0.85-0.88-0.9-0.93-0.95-0.98-1.0)×Iu
- 2. Time delay setting knob: tr
 - Standard operating time is based on the time of $6\!\times\!Ir$
 - Setting range: 0.5-1-2-4-8-12-16-20-Off sec (9 modes)
- 3. Relay pick-up current
 - When current over (1.15)×Ir flows in, relay is picked up.
- 4. Relay operates basing on the largest load current among R/S/T/N phase.

Short-time delay (S)

The function for fault current (over current) protection which has definite time characteristic and time delayed in inverse ratio to fault current.

- 1. Standard current setting knob: Isd
 - Setting range: (1.5-2-3-4-5-6-8-10-Off)×Ir
- 2. Time delay setting knob: tsd
 - Standard operating time is based on the time of 10×Ir.
 - Inverse time (I2t On): 0.1-0.2-0.3-0.4 sec
 - Definite time (I²t Off): 0.05-0.1-0.2-0.3-0.4 sec
- 3. Relay operates basing on the largest load current among R/S/T/N phase.
- 4. When ZSI function is set, the protection operation will take place instantaneously with input absence by downstream devices. It is advised to disable its ZSI function on the last downstream device.

Instantaneous (I)

The function for breaking fault current above the setting value within the shortest time to protect the circuit from short-circuit.

- 1. Standard current setting knob: li
- Setting range: (2-3-4-6-8-10-12-15-Off)×In
- 2. Relay operates basing on the largest load current among R/S/T/N phase.
- 3. Total breaking time is below 50ms.
- 4. When using the ERMS function, Instantaneous setting value is applied as 2*In (N type OCR does not apply)

Ground Fault (G)

The function for breaking ground fault current above setting value after time-delay to protect the circuit from ground fault.

- 1. Standard setting current knob: Ig - Setting range: (0.2-0.3-0.4-0.5-0.6-0.7-0.8-1.0-Off)×In
- 2. Time delay setting knob: tg
 - Inverse time (I²t On): 0.1-0.2-0.3-0.4 sec
 - Definite time (I²t Off): 0.05-0.1-0.2-0.3-0.4 sec
- Ground fault current is vector sum of each phase current. Therefore, 3Pole products may operate under its phase-unbalance including ground fault situations.(R+S+T+(N) Phase)
- 4. When ZSI function is set, the protection operation will take place instantaneously with input absence by downstream devices. It is advised to disable its ZSI function on the last downstream device.
- Ground-fault functions are basically provided with products equipped with a trip relay through its internal CT that is embedded in each phase. (But, it can't be used with earth-leakage protection function at the same time)

Earth Leakage (G) - Option

The function for breaking earth leakage current above setting value after time delay to protect the circuit from earth leakage. (A, P, S type)

- 1. Standard setting current knob: $I_{\triangle n}$
- Setting range: 0.5-1-2-3-5-10-20-30-Off (A)
- 2. Time delay setting knob: △t
 - Trip time: 140-230-350-800 ms
 - Alarm time: 140-230-350-800-950 ms
- 3. Setting values within the alarm range will not trip the breaker but will activate its alarm.
- 4. This function is enabled and can be used only with private external CT(secondary output 5A) selected by customers.
- 5. When ZSI function is set, the protection operation will take place instantaneously with input absence by downstream devices. It is advised to disable its ZSI function on the last downstream device.

※ Use cautions with earth-leakage current settings

- When using ZCT provided by customers, the setting range should be from 0.5 to 5A based on its secondary current.(Secondary output rating : 5A)

Hence, under 100:5A CT, if trip relay is set to 0.5A, earth-leakage exceeding 10A will activate its operation ($0.5A \times 20 = 10A$)

% Guideline for external CT usage

- Earth-leakage protection characteristics using the standard CT that is installed inside the ACB can protect currents from 20 to 100% range on its rated current.
- As rated currents on ACB increases, current that is covered by its standard CT increase as well. This can not protect against small leakage currents.
- ex) 400A ACB Min. Earth-leakage current 400A×20% =80A

4000A ACB Min. Earth-leakage current 4000A × 20% = 800A

- Therefore, customers are advised to install an external CT in accordance with its rated currents within its systems. And choose trip relay(E, X type) which is required with external CT usage in order to provide earth-leakage functions.

Susol

Measurement function

Measurement element	Detailed element	Unit	Display range	Accuracy
Line current	la,lb,lc		A type: 0 15In~17In	±3%
Normal current	l1	A	P/S type: 0.12ln~1.6ln	
Reverse current	l ₂			
Line voltage	Vab,Vbc,Vca			±1%
Phase voltage	Va,Vb,Vc		60 6001/	±1%
Normal voltage	V ₁	v	00~090V	
Reverse voltage	V2			
Line-to-line	\angle Vabla, \angle Vablb, \angle Vablc,			⊥ 1 °
Line-to-current	∠VabVbc, ∠VabVca	0	0.060°	±1
Phase-to-phase	∠VaVb,∠VaVc]	0~300	±1°
Phase-to-current ∠Vala, ∠Vblb, ∠Vclc				±1°
Active power	Pa(ab), Pb(bc), Pc(ca), P	kW	1kW~99,999kW	±3%
Reactive power	Qa(ab), Qb(bc), Qc(ca), Q	kVar	1kVar~99,999kVar	±3%
Apparent power	Sa(ab), Sb(bc), Sc(ca), S	kVA	1kVA~99,999kVA	±3%
Active operav	WHa(ab), WHb(bc),	kWh	1kWb 0000 00MWb	+ 20/
Active energy	WHc(ca), WH	MWh	1KVVII~9999.991010011	1070
Popotivo oporav	VARHa(ab), VARHb(bc),	kVarh	11//arb 0000 00M//arb	+ 20/
neactive energy	VARHc(ca), VARH	Mvarh	1Kvani~9999.99ivivani	±370
Reverse active	rWHa(ab), rWHb(bc),	kWh	1kW/b 0000 00M/W/b	+ 20/
energy	rWHc(ca), rWH	MWh	160011~9999.991010011	±370
Frequency	F	Hz	45~65Hz	
Power factor(PF)	PFa(ab), PFb(bc), PFc(ca), PF		+: Lead, -: Lag	
Unbalance rate	Iunalance, Vunbalance	%	0.0~100.0	
Active power demand	Peak demand	kW	1kW~999999kW	
Current demand	Peak demand	Α	80A~65,535A	
Voltage	1st~63th harmonics of	V	60, 600)/	
harmonics	Va(ab),Vb(bc),Vc(ca)	v	00~0907	
Current harmonics	1st~63th harmonics of la,lb,lc	Α	80A~65,535A	
THD, TDD		%	0.0~100.0	
K-Factor		-	0.0~100.0	
	Measurement elementLine currentNormal currentReverse currentIne voltagePhase voltageNormal voltageReverse voltageLine-to-lineLine-to-currentPhase-to-phasePhase-to-currentActive powerActive energyReverse active energyFrequencyPower factor(PF)Unbalance rateActive powerGurrent demandCurrent demandVoltage harmonicsTHD, TDDK-Factor	Measurement elementDetailed elementLine currentIa,Ib,IcNormal currentI1Reverse currentI2Line voltageVab,Vbc,VcaPhase voltageVa,Vb,VcNormal voltageV1Reverse voltageV2Line-to-line∠Vabla, ∠Vablb, ∠Vablc,Line-to-current∠VabVbc, ∠VabVcaPhase-to-current∠Vab,∠VaVcPhase-to-current∠Vala, ∠Vblb, ∠VclcActive powerQa(ab), Pb(bc), Pc(ca), PReactive powerSa(ab), Sb(bc), Sc(ca), SActive energyWHa(ab), WHb(bc), WHc(ca), WHReactive energyVARHa(ab), VARHb(bc), VARHa(ab), VARHb(bc), VARHa(ca), VARHReverse activerWHa(ab), rWHb(bc), PFe(ab), PFb(bc), PFc(ca), PFPower factor(PF)PFa(ab), PFb(bc), PFc(ca), PFPower factor(PF)PFa(ab), PFb(bc), PFc(ca), PFUnbalance rateIunalance, VunbalanceActive power demandPeak demandVoltage1st~63th harmonics of harmonicsVa(ab),Vb(bc),Vc(ca)THD, TDDK-FactorIst~63th harmonics of Ia,Ib,Ic	Measurement elementDetailed elementUnitLine currentIa,Ib,IcANormal currentI1AReverse currentI2ALine voltageVa,Vb,VcAPhase voltageV2ANormal voltageV2AReverse voltageV2ALine-to-line∠Vabla, ∠Vablo, ∠Vablc, Line-to-current∠VabVc, ∠VabVcaPhase-to-phase∠VaVb,∠VaVcPhase-to-phase∠VaVb,∠VaVcActive powerPa(ab), Pb(bc), Pc(ca), PkWReactive powerQa(ab), Qb(bc), Qc(ca), QkVarApparent powerSa(ab), Sb(bc), Sc(ca), SkWhMelca), WHWHa(ab), WHb(bc), WHc(ca), WHMWhReactive energyVARHa(ab), VARHb(bc), VARHa(ab), rWHb(bc), WHKkWhReverse active energyrWHa(ab), rWHb(bc), PFc(ca), PFHzPower factor(PF)PFa(ab), PFb(bc), PFc(ca), PFHzPower factor(PF)PFa(ab), PFb(bc), PFc(ca), PFHzPower factor(PF)PFa(ab), PFb(bc), PFc(ca), PFHzUnbalance ratelunalance, Vunbalance%Active power demandPeak demandAVoltage1st-63th harmonics of Ia,Ib,IcAVoltage1st-63th harmonics of Ia,Ib,IcATHD, TDDIst-63th harmonics of Ia,Ib,Ic%K-FactorIst-63th harmonics of Ia,Ib,Ic%	Measurement elementDetailed elementUnitDisplay rangeLine currentIa,lb,lcAAtype: 0.15ln-17ln P/Stype: 0.12ln-1.6lnNormal currentIaAAtype: 0.15ln-17ln P/Stype: 0.12ln-1.6lnReverse currentIzAAtype: 0.15ln-17ln P/Stype: 0.12ln-1.6lnLine voltageVab,Vbc,VcaPANormal voltageVa,Vb,VcPANormal voltageV2PAtype: 0.12ln-16lnLine-to-lineZVabla, ZVablb, ZVablc, Line-to-currentZVabVbc, ZVabVc,ArguerentePhase-to-phaseZVaVbc, ZVaVcAtive 39999kWaPhase-to-phaseZVaVb, ZVaVcAtivar-99,999kVaActive powerQa(ab), Qb(bc), Qc(ca), QKVa1kVar-99,999kVaActive energyWHa(ab), WHb(bc), WHc(ca), WHKWhHtwh-9999,99MWhReverse active energyVARHa(ab), VARHb(bc), VARHa(ab), VARHb(bc), WHc(ca), WHKWhHtwh-9999,99MWhReverse active energyFHz45-66HzPower factor(PF)PFa(ab), PFb(c), PFc(a), PFHz45-66HzPower factor(PF)PFa(ab), PFb(c), PFc(a), PFMwh1kWh -9999,99MWhGundance rate unbalance rateIunalance, Vunbalance%0.0-100.0Active power demandPeak demandA80A-65,535AVoltage harmonicsIst-63th harmonics of Ia,lb,lcA80A-65,535AVoltage harmonicsIst-63th harmonics of Ia,lb,lcA80A-65,535AVoltage harmonicsIst-63th harmonic

Voltage module

For P and S type trip relays, a separate voltage module is necessary to measure other elements beside the current. (Separate purchase necessary)

Voltage input range: AC 60~690V
Input/Output Ratio → 220V: 200mV

Susol

Man machine interface

An example of graphic LCD display

Initial display

Susol

Protection element setting

Fine adjustment of protection setting current

- OCR and OCGR's current setting is basically controlled by knob's setting values.
- The fine current that cannot be controlled by knob is adjustable by using ♥, ▲ key.
- Fine adjustment is only adjustable in the present knob and next knob's setting range, when moving knob, the adjusted data becomes reset state.

• The setting method of OCGR is same with OCR's, fine adjustment is available.

Susol

Measurement element display

Characteristics curves

Long-time delay (L)

5000 2000 Ir = 0.4...1×In 1000 500 200 100 50 tr = 0.5...20s 40 30 20 20 10 t(s) 5 4 3 2 1 0.5 0.4 0.3 0.2 0.1 0.05 0.02 0.01 0.22 N ო 4 5 10 0.7 - \sim 20 \times Ir

Susol

LSELECTRIC | 41

Characteristics curves

Instantaneous (I) Ground fault (G)

Susol

IDMTL

LSELECTRIC | 43

Susol

Characteristics curves

Pre Trip Alarm

Susol

ZSI - Zone Selective Interlocking (A, P, S type)

Zone-selective interlocking drops the delay time for breakers to eliminate faults. It minimizes the shock that all kinds of electric machineries get under fault conditions.

- 1. In the case that a short time-delay or a ground fault accident occurs in a ZSI built-in system, the breaker at the accident site sends a ZSI signal to halt the upstream breaker's operation.
- 2. To prevent a breakdown, the trip relay of the ACB at the accident site activates trip operation with no time delay.
- 3. The upstream breaker that receives the ZSI signal adheres to a pre-set short time-delay or ground fault time-delay for protective coordination in the system. However, the upstream breaker that does not receive the signal will trip instantaneously.
- 4. For normal ZSI operation, operation time should be arranged accordingly so that downstream circuit breakers will react before upstream breakers under overcurrent/short time delay/ground fault situations.
- 5. ZSI connecting line needs to be Max. 3m.

1) Occurrence of fault A

- Only breaker ① performs instantaneous trip operation.

2) Occurrence of fault B

- Breaker ② performs instantaneous trip operation, breaker ① performs trip operation after prearranged delay time But if breaker ③ did not break the fault permally.
- But if breaker ② did not break the fault normally, breaker ① performs instantaneous trip operation to protect system.

ERMS and digital I/O (A, P, S type)

ERMS(Energy Reduction Maintenance Setting) is a function to reduce the arc energy to ensure workers' safety. When using the ERMS function, the instantaneous setting value is minimized(2*In). A, P, and S type trip relays are able to perform the ERMS by digital input and have 3 DO (digital output).

1. To use the ERMS function, short both ends of ERMS terminal

- 2. Digital input
 - [EM1-EM2] input: ERMS
 - [Z1-Z2] Input: ZSI input
 - [E1-E2] Input: ZCT for earth leakage detection or external CT input
- ** All DI are dry contact that has 3.3V of recognition voltage. When inputting close by SSR(Solid State Relay) or open-collector, connect collector (Drain) to EM1.
- 3. Digital output 3a (524, 534, 544-513)
 - Fault output: Long/Short time delay, Instantaneous, Ground fault, UVR, OVR, UFR, OFR, rPower, Vunbal, Iunbal
 - (Maintains state as Latch form until user pushes reset.)
 - General DO: when setting L/R as remote, it is available to control close/open remotely by using communication.

Trip Relay	Digital Output	Long time	Short time	Instantaneous	Ground	Overload Alarm	OVR	UVR	rPower	Vunbal	lunbal	OFR	UFR	OPR	Note		
	DO1(524)	•	0	0	0	0	0	0	0	0	0	0	0	0			
P, S	DO2(534)	0	٠	•	0	0	0	0	0	0	0	0	0	0	Programmable		
900	DO3(544)	0	0	0	•	0	0	0	0	0	0	0	0	0			
	DO1(524)	٠	×	х	Х												
A type	DO2(534)	×	٠	•	Х		Not available										
	DO3(544)	×	×	×	•												

Susol

Communication

Modbus/RS-485

- Operation mode: Differential
- Distance: Max. 1.2km
 Cable :
- General RS-485 shielded twist 2-pair cable
- Baud rate :
- 9600bps, 19200bps, 38400bps • Transmission method: Half-Duplex
- Termination: 100Ω

Profibus-DP

- Profibus-DP module is installed separately (Option)
- Operation mode: Differential
- Distance: Max. 1.2km
- · Cable :
- Profibus-DP shielded twist 2-pair cable
- Baud rate: 9600bps~12Mbps
- Transmission method: Half-Duplex
- Termination resistor: 100Ω
- Standard: EN 50170/DIN 19245

Profibus-DP communication module (Option)

Event & fault recording (P, S type)

When events such as setting change, information change, self-diagnosis error, and status change occur, the P and S types can record up to 256 events in accordance with time(ms). In addition, they can record up to 526 (up to 10 for A type) faults, including information such as fault cause, fault phase, fault value, and so on, in accordance with time(ms).

* Fault information is recorded only when there is external control power

System information

P and S type can display the ACB's information as following.

- Present time: year/month/date/hour/minute/ms
- ACB current ratings
- N-phase current ratings: 100%
- Frequency information: 60Hz / 50Hz
- Closing numbers of breaker: CB ON numbers
- Trip relay operating time: OCR ON time
- ON time of breaker: CB ON time
- F/W ver. information

System information display

Susol

System block diagram

This diagram is based on "CONNECTED" position of a circuit breaker and Opening, Motor charging, Releasing of locking plate should be normal condition.

Terminal code description

13 14 ~ 63 64	Auxiliary switch "a"
11 12 ~ 61 62	Auxiliary switch "b"
413 414	Charged signal
423 424	Charged signal communication
U1 U2	Motor charging
A1 A2	Closing coil
C1 C2	Shunt trip
C11 C12	2nd shunt trip

D1 D2	Voltage input terminal of UVT
83 84	Alarm1 "a"
183 184	Alarm2 "a"
251 252	Ready to close switch
R1 R2	Control power
513 ~ 544	Alarm contact
EM1 EM2	ERMS
485+ 485-	RS-485 communication

Note) 1. The diagram is shown with circuits de-energized, all devices open, connected and charged and relays in normal position

Relay is normal condition and charging type is "ON-Charging"
 The standard auxiliary contact is 3a3b. The auxiliary switch in above diagram is composed of 5a5b. See page 59 for more detail on auxiliary switches.
 Option

- Ready to close contact, Trip alarm contact, UVT coil, Fully charged contact, secondary trip coil

Cell switch, Temperature module, Voltage module, Remote close-open module, ZCT, ZSI
Please consult us for the use of ZSI (Zone selective Interlocking).
Refer to the page 24 for the connection of Trip relay and the page 56 for UVT.

7. For connecting RS-485 verify if the polarity is correct

Z1 Z2	ZSI input
Z3 Z4	ZSI output
E1 E2	ZCT
VN ~ V3	Voltage module
TC1 , TC2 ~ T1 , T2	Temperature module
311 ~ 344	Position switch

Accessory code description

Ax	Auxiliary switch
LTD	Long time delay trip indicator
STD/Inst	Short time delay/instantaneous
GTD	Ground fault trip indicator
CL	Cell switch
M	Motor
00	Closing coil
SHTI	Shunt tripping device 1
SHT2	Shunt tripping device 2
WT	UVT coil

	Internal wiring
	External wiring (by customer)
_(Connector of the control circuit terminal of drawout type