Annex to the technical catalog

Tmax 18

Low voltage molded case circuit breaker up to 3000 A
UL 489 and CSA C22.2 Standard

ABB Tmax T8

Index

Main characteristics 3
Protection trip units 5
Accessories 7
Characteristic curves and technical information 14
Wiring diagrams 21
Overall dimensions 30
Ordering codes 35

Main characteristics

The Tmax family, conforming to the UL 489 and CSA C22.2 No. 5.1 Standards, is enriched with the Tmax T8 size, which allows 3000 A to be reached. Also available in the 1600 A, 2000 A and 2500 A frames, Tmax T8 is equipped with the same electronic trip units as Tmax T7, thereby guaranteeing extremely high performances able to satisfy all installation requirements. Adequately sized for the performances offered ($\mathrm{W}=16.8$ / $\mathrm{D}=11.2$ / $\mathrm{H}=15.0 \mathrm{in})$. Tmax T8 is able to interrupt the following short-circuit currents: 125 kA@480 V and 100 kA@600 V.

Main characteristics

General characteristics

The Tmax T8 size has both circuit breakers and molded case switches (MCS). The following tables show the main characteristics of these ranges.

Circuit breakers for power distribution

				Tmax 78
Frame size			[A]	1600/2000/2500/3000
Number of poles			[No]	3/4
Rated voltage		(AC) $50-60 \mathrm{~Hz}$	[$]$	600
		(DC)	[$]$	-
Test voltage (1 min) $50-60 \mathrm{~Hz}$			[V]	3000
Interrupting ratings			[kA rms]	V
	240 V AC		[$\mathrm{kA} \mathrm{rms]}$	125
	480 V AC		[kA rms]	125
	600 V AC		[kA rms]	100
Trip units	Electronic	PR232/P-T8		\square
		PR331/P		\square
		PR332/P		\square
Dimensions fixed version (3p)		H	[in-mm]	15.0-382
		W	[in-mm]	16.8-427
		D	[in-mm]	11.2-282
Mechanical life			erations]	15000
Weight (fixed 3p)		1600/2000/2500 A	[lbs]	161
		3000 A	[lbs]	236

Molded case switches (MCS)

The Tmax T8 MCS are derived from the corresponding circuit breakers, of which they keep the overall dimensions, the versions, the fixing systems and the possibility of mounting accessories unchanged. This version only differs from the circuit breakers in the absence of the protection trip units. All molded case switches comply with the UL 489 and CSA C22.2 Standards and are self-protected.

			Tmax T8V-D
Rating		[A]	2000/2500/3000
Poles		[No]	3/4
Magnetic override		[A]	40000
Rated voltage	AC ($50-60 \mathrm{~Hz}$)	[V]	600
	DC	[V]	-

Protection trip units

Electronic trip units

The Tmax T8 circuit breakers can be equipped with the same protection trip units as those available on the Tmax T7 circuit breaker, except for the PR231 which is not provided on T8. The protection trip units available are therefore:

- PR232/P-T8
- PR331/P
- PR332/P

For further details, please consult the technical catalogue: "Tmax - Low Voltage moulded-case circuitbreakers up to 1600 A" (code 1SDC210023D0203).

Interchangeability

Tmax T8 circuit breakers can be equipped either with PR232/P-T8, PR331/P and PR332/P trip units. Thanks to their semplicity to change the rating plug, the end customer can change the In of the circuit breaker extremely rapidly.

Trip units

Circuit breakers
In [A]
T8 1600
T8 2000
T8 2500
T8 3000

PR232/P-T8					
1000	1200	1600	2000	2500	3000
A	A	\square			
A	A	A	\square		
A	A	A	A	\square	
-	A	A	-	-	\square

PR331/P					
1000	1200	1600	2000	2500	3000
$\mathbf{\Delta}$	$\mathbf{\Delta}$	$\boldsymbol{\square}$			
$\mathbf{\Delta}$	$\mathbf{\Delta}$	$\mathbf{\Delta}$	\square		
$\mathbf{\Delta}$	$\mathbf{\Delta}$	$\mathbf{\Delta}$	$\mathbf{\Delta}$	\square	
$\mathbf{\Delta}$	$\mathbf{\Delta}$	$\mathbf{\Delta}$	$\mathbf{\Delta}$	$\mathbf{\Delta}$	\square

- complete circuit breaker already coded

A = circuit breaker to be assembled (rating plug extracode to be added)

Protection trip units

Range of application of the alternating current circuit breakers

$\mathbf{A C}$		Trip unit	Range $[\mathbf{A}]$
T 8		PR232/P-T8	$1000 \ldots 3000$
	PR331/P	$1000 \ldots 3000$	

Rating plug

Circuit breaker	Rated current lu	1000	1200	1600	2000	2500	3000
T8	1600	■	■	■			
	2000	\square	■	\square	\square		
	2500	\square	\square	\square	\square	\square	
	3000	\square	\square	\square	\square	\square	\square

Accessories

Tmax T8 can be fitted with a complete range of accessories, which allows the user to deal with different plant requirements. From the viewpoint of the request for standardization on the market, Tmax T 8 is able to offer most of its accessories in common with other circuit breaker sizes.
The various types of accessories which can equip Tmax T8 are given below.

Connection terminals

For each type of terminal, the tables below summarize the information needed to make the connections.

Front terminals - F

Allow connection of busbars or cables terminated with cable terminals

Type	Version	Pieces	Busbars/cable terminals (in-mm)			Tightening [lbin-Nm]	Phase separators
			W	D	\varnothing		
T8 2000	F	3	3.94-100	0.2-5	$4 \times 0.59-15$	625-70	R
T8 2500	F	4	3.94-100	0.2-5	$4 \times 0.59-15$	625-70	R

Rear vertical terminals - VR

Allow connection of busbars at the rear							
Type	Version	Pieces	Busbars/cable terminals (in-mm)			Tightening [lbin-Nm]	Phase separators
			W	D	\varnothing		
T8 2000	F	3	3.94-100	0.2-5	$4 \times 0.59-15$	625-70	R
T8 2500	F	4	3.94-100	0.2-5	$4 \times 0.59-15$	625-70	R
T8 3000	F	4	3.94-100	0.2-5	$4 \times 0.71-18$	890-100	R

Phase separating partitions

These allow the insulation characteristics between the phases at the connections to be increased. They are mounted from the front, even with the circuit breaker already installed.
Two versions are available for Tmax circuit breakers:

- 3.94" (100 mm) high
- 7.87" (200 mm) high.

Accessories

Shunt trip/closing coil (YO/YC) and second shunt trip (YO2) UL Listed

According to the installation position, these devices allow remote opening or closing control of the apparatus. They can be supplied either by means of impulses with a minimum duration of 100 ms , or permanently. In the latter case, the following conditions must be checked:

- when a shunt trip is supplied, wait 30 ms before giving a closing command;
- when a closing coil is supplied to carry out circuit breaker reclosing after opening, it is necessary to momentarily de-energize the shunt closing coil (the circuit breaker operating mechanism is, in fact, fitted with the anti-pumping device).
Operation of the releases is guaranteed for a voltage between 70\% / 85\% (YO/YC) and 110\% of the rated power supply voltage Un, both in alternating and in direct current.
For the installations where it is necessary to have extremely high safety of the circuit breaker remote opening command, it is possible to equip T8 with a second shunt trip. This device is fitted with a special support to hold it, but can in any case hold the standard closing coil and shunt trip. The seat of the second shunt trip is the one of the undervoltage release, which is therefore incompatible. The special support including the second shunt trip is installed in place of the standard support. The technical characteristics of the second shunt trip are the same as those of the standard shunt trip.

Version	Absorbed power on inrush Tmax T 8	
	AC [VA]	DC [W]
24 V DC		200
$30 \mathrm{~V} \mathrm{AC/DC}$	200	200
$48 \mathrm{~V} \mathrm{AC/DC}$	200	200
$60 \mathrm{~V} \mathrm{AC/DC}$	200	200
110-120 V AC/DC	200	200
120-127 V AC/DC	200	200
220-240 V AC/DC	200	200
240-250 V AC/DC	200	200
$380-400 \mathrm{~V} \mathrm{AC}$	200	
440 V AC	200	
Opening time (YO-YO2) [ms]	≤ 60	≤ 60
Closign time (YC) [ms]	≤ 80	≤ 80

SOR Test Unit

The SOR control and monitoring Test Unit allows correct functionality of the shunt trips which can be mounted on Tmax T8 to be verified in order to guarantee high reliability of the circuit breaker opening command.
For further details, please consult the technical catalogue: "Tmax - Low Voltage moulded-case circuitbreakers up to 1600 A" (code 1SDC210023D0203).

Undervoltage release (YU)
 UL Listed

The undervoltage release carries out circuit breaker opening in the case of notable lowering or lack of power supply voltage of the latter. The power supply of the release is branched on the supply side of the circuit breaker or from an independent source and circuit breaker closing is only possible with the release supplied (the lock on closing is made mechanically).
The release can operate either in direct or alternating current. Circuit breaker opening takes place with release power supply voltage values equal to $35-70 \%$ Un, whereas circuit breaker closing is possible with release power supply voltage within the 85-110\% Un range. It can be fitted with a contact signaling the undervoltage release is de-energized.

Version	Power consumption during permanent operation Tmax 18	
	AC [VA]	DC [W]
24 V DC		5
$30 \mathrm{~V} \mathrm{AC/DC}$	5	5
$48 \mathrm{~V} \mathrm{AC/DC}$	5	5
$60 \mathrm{~V} \mathrm{AC/DC}$	5	5
110-120 V AC/DC	5	5
120-127 V AC/DC	5	5
220-240 V AC/DC	5	5
240-250 V AC/DC	5	5
$380-400 \mathrm{~V} \mathrm{AC}$	5	
440 V AC	5	
Opening time [ms]	30	30

Time-delay device for undervoltage release

The undervoltage release can be combined with an external electronic time-delay device mounted outside the circuit breaker. It allows circuit breaker opening to be delayed in the case of lowering or lack of power supply voltage of the release itself, according to established and adjustable delays, so as to avoid undesired trips caused by temporary malfunctions.
The time-delay device must be used with an undervoltage release with the same operating voltage.

| Circuit breaker | | Power supply [V AC/DC] |
| :--- | :--- | :--- | :--- |
| T8 | | $24 \ldots 30$ |
| | | 48 |
| | | 60 |
| Adjustable opening time [s] | | $110 \ldots 125$ |

Accessories

Electric signals

UL Listed

The Tmax T8 circuit breaker can be fitted with a complete range of auxiliary contacts able to take the information about its state of operation outside the circuit breaker. These auxiliary contacts are available for use both in direct and in alternating current at different voltages.

Auxiliary status contacts

These are auxiliary contacts on changeover for signaling circuit breaker open or closed and are available in the following two combinations:

- 4 open/closed contacts for PR232 and PR331
- 4 open/closed contacts for PR332 (4 contacts on changeover + 1 contact dedicated to trip unit)

The auxiliary contacts are available with rated voltage of 400 V or for lower rated voltages at 24 V (digital signals).
The auxiliary contacts for PR332 are always supplied with automatic circuit breakers.

Bell alarm

This allows visual signaling (mechanical) and remote signaling (electrical) in the case of circuit breaker open following overcurrent release operation by means of advance of the release operation pushbutton. The circuit breaker can only be closed again by resetting the pushbutton in its normal position.

Contact signaling undervoltage release de-energized (Aux. contact YU)

The undervoltage releases can be fitted with a contact (at choice normally closed or open) for signaling undervoltage release energized for remote signaling of the state of the undervoltage release.

Trip reset

This is an electronic contact which allows remote resetting of the circuit breaker following operation of the overcurrent releases. It is available with three power supply voltages: $24 . . .30 \mathrm{~V}$ AC/DC, $110 \ldots 130 \mathrm{~V}$ AC/DC and 200... 240 V AC/DC.

Mechanical operation counter

This device is connected to the operating mechanism by means of a simple lever device. It indicates the number of mechanical operations of the circuit breaker. The indication is visible from the outside on the front of the circuit breaker.

Spring charging motor UL Listed

This automatically recharges the circuit breaker operating mechanism closing springs. This operation is done automatically immediately after circuit breaker closing.
When there is no power supply voltage, or during maintenance work, the closing springs can in any case be charged manually by means of the special operating mechanism lever. This is always provided with a limit contact and microswitch for signaling closing springs charged.

		AC [V]	DC [V]
Rated voltage, Un		24... 30	24... 30
		48... 60	48... 60
		100... 130	100... 130
		220... 250	220... 250
Operating voltage	[\% Un]	85... 110	85... 110
Power consumption on inrush		500 VA	500 W
Inrush time	[s]	0.2	0.2
Charging time	[s]	4-5	4-5

Accessories

Padlock in the open position

This allows the circuit breaker to be locked in the open position by means of padlocks, with up to a maximum of 3 padlocks (not supplied), with $4 \mathrm{~mm} \varnothing$.

Key lock in the open position

This allows the circuit breaker to be locked in the open position by means of a circular lock with different keys (for an individual circuit breaker) or with the same keys (for several circuit breakers). In the latter case, up to four different key numbers are available.

Transparent protection for pushbutton - TCP

A transparent protection for the circuit breaker opening and closing pushbuttons is available on Tmax T8. The operations on the circuit breaker are therefore prohibited except by means of a special tool.

IP54 Door protection (NEMA 3/S/13)

This is made by means of a transparent plastic cover which completely protects the front of the circuit breaker and allows IP54 degree of protection to be obtained. Mounted on hinges, it is provided with a key lock.

Accessories for protection trip units

The majority of the accessories for the protection trip units which equip the Tmax T8 circuit breakers are in common with those available for the Tmax T7 size and therefore have the same characteristics and possibility of being fitted with accessories.
For further details, please consult the technical catalogue: "Tmax - Low Voltage moulded-case circuitbreakers up to 1600 A" (code 1SDC210023D0203).
The list of the modules and accessories which can be combined with the protection trip units for Tmax T8 is given below:

- PR330N-T8 (optional on PR332/P)
- PR330/D-M (optional on PR332/P)
- PR330/R Actuation unit
- BT030 Wireless communication unit
- PR030/B Power supply unit
- HMIO30 Interface from front of switchgear
- PR021/K Signaling unit
- PR010/T Programming and test unit.

Rating plug

(UL file: E116596)

Available on the electronic trip units which can be mounted on Tmax T8, it must be applied onto the front of the trip unit itself and provides information about the current sensor setting. It is therefore no longer necessary to change the circuit breaker current sensors, but simply to replace the rating plug modify the rated current of the circuit breaker.

Type of circuit breaker	$\begin{gathered} \text { Rated current } \\ \text { lu } \\ \hline \end{gathered}$	1000	1200	1600	2000	2500	3000
T8	1600	■	■	■			
	2000	\square	\square	\square	\square		
	2500	\square	\square	\square	■	■	
	3000	\square	\square	\square	\square	\square	\square

Current sensor for external neutral

This is applied onto the external neutral conductor and makes it possible to have the G protection against earth faults with three-pole circuit breakers and external neutral. The current sensor must be connected directly to the terminal box. This combination is not possible with the PR232-T8 electronic trip unit.

T8
[A]
$1000 \ldots 3000$

Characteristic curves and technical information

Trip curves

T8 1600/2000/2500/3000 - PR331/P
Function G

T8 1600/2000/2500/3000 - PR331/P

Functions L-S-I
Note: For $\mathrm{T} 8 \mathrm{In}=3000 \mathrm{~A} \Rightarrow I_{3} \max =12 \mathrm{x} \mathrm{In}$

T8 1600/2000/2500/3000 - PR332/P
L-I Functions
Note: For $\mathrm{T} 8 \mathrm{In}=3000 \mathrm{~A} \Rightarrow \mathrm{I}_{3} \max =12 \times \mathrm{In}$

T8 1600/2000/2500/3000 - PR332/P

L-S-I Functions
Note: For $\mathrm{T} 8 \mathrm{In}=3000 \mathrm{~A} \Rightarrow \mathrm{I}_{3} \max =12 \mathrm{x} \ln$

T8 1600/2000/2500/3000 - PR332/P

U Function

T8 1600/2000/2500/3000 - PR332/P

G Function

T8 1600/2000/2500/3000 PR332/P with PR330/V-T8

UV Function

$$
k=13.5 \quad \alpha=1
$$

Characteristic curves and technical information

Trip curves

T8 1600/2000/2500/3000

 PR332/P with PR330/V-T8

T8 1600/2000/2500/3000
PR332/P with PR330/V-T8
RP Function

T8 1600/2000/2500/3000 PR332/P with PR330/V-T8

RV Function

Characteristic curves and technical information

Specific let-through energy curves

Characteristic curves and technical information

Limitation curves

Characteristic curves and technical information

Temperature performances
Circuit breakers with electronic trip units

Characteristic curves and technical information

Power losses

Power [W/pole]	In [A]	T8
PR232-T8	1600	30
PR331	2000	46
PR332	2500	73
	3000	117

Wiring diagrams

Information for reading - Circuit breakers T8

Warning

Before installing the circuit breaker, carefully read notes F and O on the circuit diagrams.

Operating status shown

The circuit diagram is for the following conditions:

- circuit breaker in open position
- circuits de-energized
- trip units not tripped
- motor operating mechanism with springs discharged.

Versions

The control circuits are fitted between terminals XV (connectors X12-X13-X14-X15 are not supplied).

Molded case switches (MCS)

With this version, the applications indicated in figures 13, 14, 41A, 42A, 43A, 44A, 45A, 62A cannot be provided.

Version with PR232/P-T8 electronic trip unit

With this version, the applications indicated in figures 41A, 42A, 43A, 44A, 45A, 62A cannot be provided.

Version with PR331/P electronic trip unit

With this version, the applications indicated in figures 42A, 43A, 44A, 45A cannot be provided.

Version with PR332/P electronic trip unit

With this version, the applications indicated in figure 41A cannot be provided.

Caption

Wiring diagrams

Information for reading - Circuit breakers T8

K51/YC	= Closing control from PR332/P electronic trip unit with communication module PR330/D-M and PR330/R actuation unit
K51/YO	$=$ Opening control from PR332/P electronic trip unit with communication module PR330/D-M and PR330/R actuation unit
M	$=$ Motor for charging the closing springs
Q	= Circuit breaker
Q/1... 5	= Circuit breaker auxiliary contacts
S33M/1... 3	$=$ Limit contacts for spring-charging motor
S43	= Switch for setting remote/local control
S51	$=$ Contact for electrical signaling of circuit breaker open due to tripping of the over-current trip unit. The circuit breaker may be closed only after pressing the reset pushbutton, or after energizing the coil for electrical reset (if available)
S51/P1	$=$ Programmable contact (as default it signals overload present - start)
SC	$=$ Pushbutton or contact for closing the circuit breaker
SO	$=$ Pushbutton or contact for opening the circuit breaker
SO1	$=$ Pushbutton or contact for opening the circuit breaker with delayed trip
SO2	$=$ Pushbutton or contact for opening the circuit breaker with instantaneous trip
SR	$=$ Pushbutton or contact for electrical circuit breaker reset
SRTC	= Contact for electrical signaling of circuit breaker open, with springs charged and ready to close
SY	$=$ Contact for electrical signaling of circuit breaker open due to trip units tripped, YO, YO, YO2, YU (tripped position) only for circuit breakers with direct control
TI/L1	$=$ Current transformer located on phase L1
TI/L2	$=$ Current transformer located on phase L2
TI/L3	$=$ Current transformer located on phase L3
Uaux.	= Auxiliary power supply voltage (see note F)
UI/L1	$=$ Current sensor (Rogowski coil) located on phase L1
UI/L2	$=$ Current sensor (Rogowski coil) located on phase L2
UI/L3	= Current sensor (Rogowski coil) located on phase L3
UI/N	= Current sensor (Rogowski coil) located on neutral
UI/O	$=$ Current sensor (Rogowski coil) located on the conductor connecting to ground the star point of the MV/LV transformer (see note G)
W1	= Serial interface with control system (external bus): EIA RS485 interface (see note E)
W2	$=$ Serial interface with the accessories of PR331/P and PR332/P trip units (internal bus)
XB1...XB7	= Connectors for the accessories of the circuit breaker
XF	= Delivery terminal box for the position contacts of the draw out circuit breaker (located on the cradle of the circuit breaker)
XO	= Connector for YO1 release
XR1-XR2	= Connector for power circuits of PR232/P-T8, PR331/P, and PR332/P trip units
XR5 - XR13	= Connector for power circuits of PR332/P trip unit
XV	$=$ Delivery terminal box for the auxiliary circuits
YC	$=$ Closing coil
YO	$=$ Shunt trip
YO1	= Overcurrent shunt trip (trip coil)
YO2	= Second shunt trip (see note Q)
YR	= Coil to electrically reset the circuit breaker
YU	= Undervoltage release (see notes B, C and Q)

Description of figures

Fig. $1=$ Motor circuit to charge the closing springs.
Fig. $2=$ Circuit of closing coil.
Fig. $4=$ Shunt trip.
Fig. $6=$ Instantaneous undervoltage release (see notes B, C and Q).
Fig. 7 = Undervoltage release with electronic time-delay device, outside the circuit breaker (see notes B and Q).
Fig. $8=$ Second shunt trip (see note Q).
Fig. 11 = Contact for electrical signaling of springs charged or discharged.
Fig. 12 = Contact for electrical signaling of circuit breaker open, with springs charged, and ready to close.
Fig. 13 = Contact for electrical signaling of circuit breaker open due to tripping of the overcurrent release. The circuit breaker may be closed only after pressing the reset pushbutton, or after energizing the coil for electronic reset (if available).
Fig. $14=$ Electrical reset control.
Fig. $21=$ Circuit breaker auxiliary contacts (for circuit breakers with manual control only).
Fig. 41A $=$ Auxiliary circuits of PR331/P trip unit (see note F).
Fig. 42A $=$ Auxiliary circuits of PR332/P trip units (see notes F and N).
Fig. 43A $=$ Circuits of the measuring module PR330N-T8 of the PR332/P trip units internally connected to the circuit breaker (optional).
Fig. 44A = Circuits of the measuring module PR330/N-T8 of the PR332/P trip units externally connected to the circuit breaker (optional; see note O).
Fig. 45A = Circuits of the PR332/P trip unit with communication module PR330/D-M connected to PR330/N actuation unit (see notes E, F and N).
Fig. 46A = Circuits of the PR332/P trip unit PR330/N-T8 measuring module connected internally to the three-pole circuit breaker with external neutral conductor (optional)
Fig. 61A $=$ SOR TEST UNIT Test/monitoring unit (see note R).
Fig. 62A = Circuits of the PR021/K signalling module (outside the circuit breaker).

Incompatibilities

The circuits indicated in the following figures cannot be supplied simultaneously on the same circuit breaker:
6-7-8
13-14
41A-42A-45A
43A-44A-46A

Notes

A) The circuit breaker is only fitted with the accessories specified in the ABB order acknowledgement. Please contact your local sales organization.
B) The undervoltage release is supplied for operation using a power supply branched on the supply side of the circuit breaker or from an independent source. The circuit breaker can only close when the trip unit is energized (there is a mechanical lock on closing).
E) For the EIA RS485 serial interface connection see document ITSCE - RH0298 regarding MODBUS communication.
F) The auxiliary voltage Uaux allows actuation of all operations of the PR331/P and PR332/P trip units. Having requested a Uaux insulated from ground, one must use "galvanically separated converters" in compliance with IEC 60950 (UL 1950) or equivalent standards that ensure a common mode current or leakage current (see IEC 478/1, CEI 22/3) not greater than 3.5 mA , IEC 60364-41 and CEI 64-8.

Wiring diagrams

Information for reading - Circuit breakers T8

G) Ground fault protection is available with the PR332/P trip units by means of a current sensor located on the conductor connecting to ground the star center of the MV/LV transformer.
The connections between terminals 1 and 2 (or 3) of current transformer UI/O and poles T7 and T8 of the X (or XV) connector must be made with a two pole shielded and stranded cable (type BELDEN 8762/8772), no more than 15 m long. The shield must be grounded on the circuit breaker side and current sensor side.
N) With PR332/P trip units, the connections to the zone discrimination inputs and outputs must be made with a two-pole shielded and stranded cable (type BELDEN 8762/8772), no more than 300 m long. The shield must be grounded on the discrimination input side.
O) Systems with rated voltage greater than 690V require the use of an insulation voltage transformer to connect to the busbars.
P) With PR332/P trip units with communication module PR330/R, the power supply for coils YO and YC must not be taken from the main power supply. The coils can be controlled directly from contacts $\mathrm{K} 51 / \mathrm{YO}$ and $\mathrm{K} 51 / \mathrm{YC}$ with maximum voltages of 110-120 V DC and 240-250 V AC.
Q) The second shunt trip may be installed as an alternative to the undervoltage release.
R) The SOR TEST UNIT + shunt trip (YO) is guaranteed to operate starting at 75% of the Uaux of the shunt trip itself.
While the YO power supply contact is closing (short-circuit on terminals 4 and 5), the SOR TEST UNIT is unable to detect the opening coil status. Consequently:

- for continuously powered opening coil, the TEST FAILED and ALARM signals will be activated
- if the coil opening command is of the pulsing type, the TEST FAILED signal may appear at the same time. In this case, the TEST FAILED signal is actually an alarm signal only if it remains lit for more than 20s.
S) The connection cable shield must only be grounded on the circuit breaker side.
T) The connections between the TO toroidal transformer and the poles of the X13 (or XV) connector of the circuit breaker must be made using a four-pole shielded cable with paired braided conductors (BELDEN 9696 paired type), with a length of not more than 15 m . The shield must be grounded on the circuit breaker side.

Wiring diagrams

Graphic diagram symbols (IEC 60617 and CEI 3-14...3-26 Standards)

Wiring diagrams

Wiring diagram of the T8 circuit breakers

Operating status

Four-pole circuit breaker with PR232/P-T8, PR331/P, or PR332/P electronic trip unit

Three-pole circuit breaker with PR232/P-T8, PR331/P or PR332/P electronic trip unit

Three or four-pole MCS

Wiring diagrams

Electrical accessories for T8

Motor operator, shunt trip, closing coil and undervoltage release

Signalling contacts

Wiring diagrams

Auxiliary circuits for trip units

Auxiliary circuits of the PR331 and PR332 trip units

Measuring module PR330/V-T8

Auxiliary circuits of the PR332 trip unit with communication module PR330/D-M connected to actuation unit PR330/R

PR021/K signaling unit

Overall dimensions

Fixed circuit breaker - 1600/2000/2500 A

Front terminals - F

Fixed circuit breaker - 1600/2000/2500 A

Rear vertical terminals - VR

Overall dimensions

Fixed circuit breaker - 3000 A

Rear vertical terminals - VR

Compartment door drilling

Overall dimensions

Distances to be respected

Insulation distances for installation in metallic cubicle

	$\underset{[m m-i n]}{A}$	$\begin{gathered} \text { B } \\ {[m m-\mathrm{in}]} \end{gathered}$	$\begin{gathered} \text { C } \\ {[m m-i n]} \end{gathered}$
T8	200-7.87	30-1.18	120-4.72

Minimum centre distance between two circuit breakers side by side or superimposed
For assembly side by side or superimposed, check that the connection busbars or cables do not reduce the air insulation distance

Minimum centre distance for two circuit breakers side by side

Minimum centre distance for superimposed circuit breakers
$\left.\begin{array}{l}\hline \\ \hline \text { T8 }\end{array} \begin{array}{c}\mathbf{H} \\ {[\mathbf{m m}-\mathbf{i n}]}\end{array}\right] 300-11.81$

Caption

1) Connection - not insulated
(2) Insulated cable
(3) Cable terminal

Note: The dimensions shown apply for operating voltage Ub up to 690 V . The dimensions to be respected must be added to the maximum dimensions of the various different versions of the circuit breakers, including the terminals.

Ordering codes

Power distribution circuit breakers

T8 1600 - Fixed (F) - lu $\left(40^{\circ} \mathrm{C}\right)=1600 \mathrm{~A}-3$ Poles - Front terminals (F)

	In		 R1
			V	
Electronic trip unit		Icu (480 V)	125 kA	
PR232/P-T8 LSI	1600		065856	
PR331/P LSIG	1600		065857	
PR332/P LI	1600		065858	
PR332/P LSI	1600		065859	
PR332/P LSIG	1600		065860	

T8 1600 - Fixed (F) - lu $\left(40^{\circ} \mathrm{C}\right)=1600 \mathrm{~A}-4$ Poles - Front terminals (F)

T8 2000 - Fixed (F) - lu $\left(40^{\circ} \mathrm{C}\right)=2000 \mathrm{~A}-3$ Poles - Front terminals (F)

T8 2000 - Fixed (F) - lu $\left(40^{\circ} \mathrm{C}\right)=2000$ A - 4 Poles - Front terminals (F)

	In	Icu (480 V)	1SDA R1	
			V	
Electronic trip unit			125 kA	
PR232/P-T8 LSI	2000		065881	
PR331/P LSIG	2000		065882	
PR332/P LI	2000		065883	
PR332/P LSI	2000		065884	
PR332/P LSIG	2000		065885	

Ordering codes

Power distribution circuit breakers

T8 2500 - Fixed (F) - lu $\left(40^{\circ} \mathrm{C}\right)=2500 \mathrm{~A}-3$ Poles - Front terminals (F)

T8 2500 - Fixed (F) - lu $\left(40^{\circ} \mathrm{C}\right)=2500 \mathrm{~A}-4$ Poles - Front terminals (F)

Electronic trip unit	In	Icu (480 V)	1SDA R1	
			V	
			125 kA	
PR232/P-T8 LSI	2500		065891	
PR331/P LSIG	2500		065892	
PR332/P LI	2500		065893	
PR332/P LSI	2500		065894	
PR332/P LSIG	2500		065895	

T8 3000 - Fixed (VR) - lu $\left(40^{\circ} \mathrm{C}\right)=3000 \mathrm{~A}-3$ Poles - Rear vertical terminals (VR)

Electronic trip unit	In	Icu (480 V)	1SDA R1	
			V	
			125 kA	
PR232/P-T8 LSI	3000		065866	
PR331/P LSIG	3000		065867	
PR332/P LI	3000		065868	
PR332/P LSI	3000		065869	
PR332/P LSIG	3000		065870	

T8 3000 - Fixed (VR) - lu $\left(40^{\circ} \mathrm{C}\right)=3000 \mathrm{~A}-4$ Poles - Rear vertical terminals (VR)

Electronic trip unit		Icu (480 V)	1SDA R1	
			V	
			125 kA	
PR232/P-T8 LSI	3000		065871	
PR331/P LSIG	3000		065872	
PR332/P LI	3000		065873	
PR332/P LSI	3000		065874	
PR332/P LSIG	3000		065875	

Ordering codes

Molded case switches

T8V-D 2000 - Fixed (F) - lu $\left(40^{\circ} \mathrm{C}\right)=2000 \mathrm{~A}-4$ Poles - Front terminals (F)

	1SDA R1	
	3 Poles	4 Poles
Icw	40 kA	40 kA
	065896	065897

Note: Ask ABB for availability.

T8V-D 2500 - Fixed (F) - lu $\left(40^{\circ} \mathrm{C}\right)=2500$ A - 4 Poles - Front terminals (F)

Icw	1SDA R1	
	3 Poles	4 Poles
	40 kA	40 kA
	065898	065899

Note: Ask ABB for availability.

T8V-D 3000 - Fixed (VR) - lu $\left(40^{\circ} \mathrm{C}\right)=3000 \mathrm{~A}$ - Rear vertical terminals (VR)

Icw	1SDA R1	
	3 Poles	4 Poles
	40 kA	40 kA
	065900	065901

Note: Ask ABB for availability.

Ordering codes

Loose trip units

	1SDA.....R1
Electronic trip unit	
PR232/P-T8 LSI	065828
PR331/P LSIG	065829
PR332/P LI	065830
PR332/P LSI	065831
PR332/P LSIG	065832

Ordering codes

Accessories

Ordering codes

Accessories

Undervoltage release (YU)

24 V DC	038306
30 V AC / DC	038307
$48 \mathrm{~V} \mathrm{AC} \mathrm{/} \mathrm{DC}$	038308
$60 \mathrm{~V} \mathrm{AC} \mathrm{/} \mathrm{DC}$	038309
110... 120 V AC / DC	038310
120... $127 \mathrm{~V} \mathrm{AC} \mathrm{/} \mathrm{DC}$	038311
220... 240 V AC / DC	038312
240...250 V AC / DC	038313
$380 . .400$ V AC	038314
440 V AC	038315

Time-delay device for undervoltage release (D)

$24 \ldots . .30 \mathrm{~V} \mathrm{AC} \mathrm{/} \mathrm{DC}$		1SDA.....R1
$48 \vee \mathrm{AC} / \mathrm{DC}$		038316
$60 \mathrm{~V} \mathrm{AC} \mathrm{/} \mathrm{DC}$		038317
$110 \ldots 127 \mathrm{~V} \mathrm{AC} \mathrm{/} \mathrm{DC}$		038318
$220 \ldots 250 \mathrm{~V} \mathrm{AC} \mathrm{/} \mathrm{DC}$		038319

Electric signals

Auxiliary contacts

4 open/closed auxiliary contacts for PR232-T8/PR331	065971
4 open/closed auxiliary contacts for PR332 ${ }^{(1)}$	065819
4 open/closed auxiliary contacts V<24V for PR232-T8/PR331	065972
4 open/closed auxiliary contacts V<24V for PR332 ${ }^{(1)}$	065820
Bell alarm	058260
Contact signaling undervoltage release de-energized - NC	038341
Contact signaling undervoltage release de-energized - NO	038340

Trip reset

		1SDA.....R1
Trip reset 24-30 V AC/DC		058263
Trip reset $110-130 \mathrm{VAC} / \mathrm{DC}$		058262
Trip reset $200-240 \mathrm{VAC} / \mathrm{DC}$		-058261

Mechanical signals

Mechanical operation counter		
Spring charging motor		

Spring charging motor 24... 30 V AC/DC	038321
Spring charging motor 48...60 V AC/DC	038322
Spring charging motor $100 \ldots 130 \mathrm{~V} \mathrm{AC/DC}$	038323
Spring charging motor 220... 250 V AC/DC	038324

Locks

Padlock	038351
Key lock - different keys	065998
Key lock - same keys (N. 20005)	065999
Key lock - same keys (N. 20006)	066000
Key lock - same keys (N. 20007)	066001
Key lock - same keys (N. 20008)	066002

Transparent protections

		1SDA.....R1
Transparent protection for pushbuttons		038343
Protection for door IP54		

Separating partitions

Ordering codes

Accessories

Rear vertical terminals - VR

	1SDA.....R1	
VR T8 $2000-2500$		

Accessories for protection trip units

Modules for protection trip units PR331-PR332

		1SDA.....R1	
PR330 N-T8 - Voltage measuring module 3p		$065834^{(1)}$	
PR330 N-T8 - Voltage measuring module 4p		$065973^{(1)}$	
PR330/D-M - Communication module (Modbus RTU)		$063145^{(1)}$	$-065821^{(1)}$
PR330/R - Actuation module		-058259	
BT030 - External wireless communication module		-058258	
PR030B - Power supply unit			

${ }^{\text {1) }}$ Note: Ask ABB for availability.

Current sensor for external neutral

Current sensor for external neutral 1000 A... 3000 A	

Note: Ask ABB for availability.

Rating plug

$\ln =1000 \mathrm{~A}$		1SDA....R1
$\ln =1200 \mathrm{~A}$		065983
$\ln =1600 \mathrm{~A}$		063851
$\ln =2000 \mathrm{~A}$		065987
$\ln =2500 \mathrm{~A}$		065988
$\ln =3000 \mathrm{~A}$		065989

Extra code rating plug

$\mathrm{ln}=1000 \mathrm{~A}$	065986
$\mathrm{ln}=1200 \mathrm{~A}$	063584
$\mathrm{ln}=1600 \mathrm{~A}$	065990
$\mathrm{ln}=2000 \mathrm{~A}$	065991
$\mathrm{ln}=2500 \mathrm{~A}$	065992

External units for protection trip units

		1SDA.....R1
PR010/T - Test and configuration unit		048964
PR021/K - Signaling unit		059146
HMIO30 - Switchgear interface		

Spare parts

Flanges for compartment door

Flange for compartment door		1SDA.....R1

Due to possible developments of standards as well as of materials, the characteristics and dimensions specified in the present catalogue may only be considered binding after confirmation by ABB SACE.

ABB SACE

A division of ABB S.p.A.
L.V. Breakers

Via Baioni, 35
24123 Bergamo, Italy
Tel.: +39 035.395.111 - Telefax: +39 035.395.306-433
http://www.abb.com

