Switching Power Supply Type SPD 60W DIN rail mounting

Product Description

The Switching power supplies SPD series are specially designed to be used in all automation application where the installation is on a DIN rail
and compact dimensions and performance are a must.

- Universal AC input full range
- Installation on DIN rail 7.5 or 15 mm
- Short circuit protection
- Overload protection
- Class 2 output
- High efficiency
- LED indicator for DC power ON
- Power Ok output
- CE, TUV approved and cULus Listed

Optional Features

Description	Code
Spring connectors	B

Output Performances

Model	Rated output Voltage (VDC)	Output Power (W)	Output Current (A)	Voltage Trim Range		DC ON green LED at start up DC LOW red LED after start up		Typical Efficiency
				Max. VDC	Min. VDC	Max. VDC		
SPD05	5	50	10.0	5	5.5	3.5	4.5	79%
SPD12	12	60	5.0	12	14	9.0	10.8	86%
SPD24	24	60	2.5	24	28	18	21.6	89%
SPD48	48	60	1.25	48	55	37	43	89%

Output Data

Line regulation	$\pm 0.5 \%$
Load regulation	$\pm 0.5 \%$
Minimum load (A)	0
Turn on time (full resistive load)	1000 ms max
Transient recovery time	2 ms
Ripple and noise	50 mVpp
Output voltage accuracy	$\pm 1 \%$
Temperature coefficient	$\pm 0.03 \% /{ }^{\circ} \mathrm{C}$
Hold up time $\quad \mathbf{V i = 1 1 5 V A C}$	
$\mathbf{V i = 2 3 0 V A C}$	20 ms
Voltage fall time (lomom)	150 ms max

Rated continuous loading	
5V Model	10A @ 5VDC/9.0A @ 5.5VDC
12V Model	5A @ 12VDC/4.25A @ 14VDC
24V Model	2.5A @ 24VDC/2.1A @ 28VDC
48V Model	1.25A@ 48VDC/1.08A @ 55VDC
Reverse voltage	
5 V Model	7.5VDC
12V Model	18VDC
24V Model	35VDC
48V Model	63VDC
Capacitor load	7000 $\mu \mathrm{F}$
Voltage rise time at full resistive load	150 ms max

Input Data

Controls and Protections

Overload	$110-150 \%$
Input fuse	T2A/250VAC internal1)
Output short circuit	Fold forward
Power ready (only SPD 24)Ont threshold Off threshold	

Over voltage protection		VDC	
	Min.	Max.	
5V Model	6.0	6.8	
12V Model	15	16.5	
24V Model	30	33	
48V Model	60	66	

Internal surge voltage protection Varistor
(IEC 61000-4-5)

General Data (@ nominal line, full load, $\mathbf{2 5}^{\circ} \mathrm{C}$)

Ambient temperature	$-40^{\circ} \mathrm{C}$ to $71^{\circ} \mathrm{C}$
Derating ($>61^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$)	$2.5 \% /{ }^{\circ} \mathrm{C}$
Ambient humidity	$20 \sim 95 \% \mathrm{RH}$
Storage	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Protection degree	IP20
Cooling	Free air convection
Insulation voltage	
Input-Output Input-FG	3.000VAC/4242VDC min 1.500VAC/2121VDC min
Insulation resistance I/O	$100 \mathrm{M} \Omega \mathrm{min}$ (@ 500VDC)

| MTBF(Bellcore issue 6 @ $40^{\circ} \mathrm{C}, \mathrm{GB}$)
 5V Model
 $\mathbf{1 2 V}$ Model
 $\mathbf{2 4 V}$ Model
 48V Model 498000 Hours
 504000 Hours
 520000 Hours
 531000 Hours
 Case material Plastic: PC, UL94-V0
 Pollution degree 2
 Altitude 2000 m
 Dimensions LxWxD mm(inch) $90(3.60) \times 40.5(1.59) \times 114(4.49)$
 Weight 340 g |
| :--- | :--- |

Norms and Standards

Vibration resistance	meet IEC 60068-2-6 (Mounting by rail: $10-500 \mathrm{~Hz}$, $2 G$, along X, Y, Z each Axis, 60 min for each Axis)	CE	EN 61000-6-3, EN 55022 Class B, EN 61000-3-2, EN 61000-3-3, EN 61000-6-2,
Shock resistance	meet IEC 60068-2-27 (15G, $11 \mathrm{~ms}, 3$ Axis, 6 faces, 3 times for each face)		EN 55024, EN 61000-4-2 Level 4, EN 61000-4-3 Level 3,
UL / cUL	UL508 listed, UL60950-1, UL1310 Class 2 Power (only $5 \mathrm{~V}, 12 \mathrm{~V}$ w/o Class 2) Recognized, ISA 12.12.01 (Class 1, Division 2, Groups A, B, C and D)		EN 61000-4-5 L-Level 3, L/N-FG Level 4, EN 61000-4-6 Level 3, EN 61000-4-8 Level 4, EN 61000-4-11, ENV 50204 Level 2 ,
TUV	EN 60950-1, CB scheme EN 61558-1, EN 61558-2-17 (meet EN 60204)		EN 61204-3
CCC	Available upon request		

Block Diagrams

Pin Assignement and Front Controls

Pin No.	Designation	Description
$\mathbf{1}$	RDY	DC OK, output for relay (only on SPD 24)
$\mathbf{2}$	$\mathbf{+}$	Positive output terminal
$\mathbf{3}$	$\mathbf{+}$	Positive output terminal
$\mathbf{4}$	-	Negative output terminal
$\mathbf{5}$	-	Negative output terminal
$\mathbf{6}$	GND	Ground terminal to minimise High frequency emissions
$\mathbf{7}$	L	Phase input (no polarity with DC input)
$\mathbf{8}$	N	Neutral input (no polarity with DC input)
Pot1	Vout ADJ.	Trimmer for fine output voltage adjustment
L1	DC ON	DC output ready LED

Output Rdy Wiring Diagram

a) Relay

Derating Diagram

Typ. Current Limited Curve

SPD 60W - 24V

Mechanical Drawings mm (inches)

Typ. Efficiency Curve

Installation

Ventilation and cooling	Normal convection All sides 25 mm free space for cooling is recommended
Connector size range Spring terminal	AWG24-14 (0.2~2mm²) flexible/solid cable, 10 mm stripping at cable and recommends use copper conductors only, $60 / 75^{\circ} \mathrm{C}$
Screw terminal	AWG26-12 (0.2~2.5mm²) flexible/solid cable, connector can withstand torque at max $0,56 \mathrm{Nm}$ ($5 \mathrm{lbs}-\mathrm{in}$). $4 \sim 5 \mathrm{~mm}$ stripping at cable and recommends use copper conductors only, $60 / 75^{\circ} \mathrm{C}$
Max. torque for terminal Input terminals Output terminals	$\begin{aligned} & 0.56 \mathrm{Nm}(5.0 \mathrm{lb}-\mathrm{in}) \\ & 0.56 \mathrm{Nm}(5.0 \mathrm{lb}-\mathrm{in}) \end{aligned}$
$\begin{aligned} & \hline \text { General tolerances mm(in.) } \\ & 0.00(0.00) \div 30.00(1.18) \\ & 30.00(1.18) \div 120.00(4.72) \end{aligned}$	$\begin{aligned} & \pm 0.30(0.01) \\ & \pm 0.50(0.02) \end{aligned}$

