Intelligent components for systems and switch cabinets

C | Logline

Contents

C | Logline

Intelligent components for systems and switch cabinets
1 Preface... 4
2 Overview product range... 6
3 Range of products C|Logline...................................... 8
4 Energy Controlling ... 10
5 I/O components.. 22
6 Switches... 72
7 Control cabinet components |
Measuring and monitoring relays 113
Timer relays... 127
Telecommunication products ... 137
8 Index .. 141
9 Contakt... 147
10 General Information ... 149
11 General Terms and Conditions (GTC) 150

We are continuing where history left off and will still rely on optimal connections in the future!

Dear business partners, dear customers,

The family-owned company METZ CONNECT has stood for precision, reliability and ingenuity for more than four decades. Virtues that we put into practice every day at all of our worldwide production and distribution sites.

As pioneers in the communication between people and equipment, it goes without saying that we also pass on our experience and knowledge across generations. And grow steadily in the process!

The METZ CONNECT range is divided into three core areas and offers a wide range of solutions for the most demanding needs:

P|Cabling Copper and glass fiber components as well as automated infrastructure management for structured network cabling
U|Contact PCB connection technology for the connection of devices and controls in building and industrial automation

C|Logline Intelligent system and switch cabinet components for building and process automation.

You will encounter products from METZ CONNECT several times a day, often without seeing them: whether PCB components or connection terminals in control elements, copper and fiber optic components for network cabling or intelligent I/O components in the control cabinet for building automation. Many areas of everyday life, including complex industrial supply and production chains, require the intelligent networking of the involved devices and components. For all these application situations, METZ CONNECT offers full service, from the printed circuit board to the Internet.

As a partner of numerous international companies, we offer expertise resulting from 40 years of experience in standardised and, above all, customer-specific system solutions for a variety of applications in connection technology. We see ourselves as a problem solver and do not settle for the second-best solution. The search for perfection may seem expensive, but it is worth it.

Join us in mutual projects concerning equipment and plant construction as well as the structured cabling of buildings and industrial sites. We are looking forward to working with you!

Best regards

Christian Metz
Managing Partner
and the entire team from METZ CONNECT.

Innovation and consistency - from the printed circuit board to the end device.

Our high-quality, user-friendly and internationally standardised components and systems are divided into three clear ranges:

$\mathbf{P} \mid$ Cabling

Copper and Fiber Optics solutions for networks

Highly specialised, internationally standardised and high-performance network solutions in copper and fiber optic technology are impressive due to their comfortable installation, maximum quality and highest system capability across all relevant performance classes. They are used in structured building and industrial cabling as well as in data centres.

The increasing demand for data transmission volumes requires the ever greater performance and consistency of the data networks. IT technologies can be found in many applications in buildings, data centres and industrial plants.

U Contact

Connection systems for printed circuit boards

Innovative products, solutions and systems for the connection technology of printed circuit boards and devices. Products that are compatible with market standards as well as customised product solutions, including for industrial control and building automation, reflect our core competence in this area.

Terminal blocks, pin headers

Connectors

Board-to-board

C L Logline

Intelligent components for systems and switch cabinets

Intelligent system components for highly communicative and decentralised control in the areas of building and process control, relay technology and telecommunications

Bus modules

Inteface modules

Timer-, process- and monitoring relays

Uniform automation central engineering

Building automation, Process engineering

C L Logline
high performance components for integrated control tasks

We realize ideas

Technical networks and safety solutions in buildings and industrial plants are becoming increasing more intelligent. They offer the possibility of integrating internal and external processes so they can be controlled and monitored efficiently. METZ CONNECT has the perfect solutions for this.

With the C|Logline product group, METZ CONNECT provides consistent, system-capable and intelligent network components for sustainable building automation, maximum protection, optimum process control and efficient energy controlling. Advantages: High performance components shorten assembly time, reduce energy consumption, create transparency or make it possible to resolve several tasks with just one device, for example.

We realize ideas

Energy Controlling

Simple energy consumption data acquisition

The market for energy management is currently growing rapidly. As a result of the trend towards digitisation and government support programmes, such as special equalisation schemes and peak balancing, more and more small and medium-sized enterprises (SMEs) in Germany are becoming involved in energy management. The solution approaches range from a simple visualization of the energy consumption to automation, and all the way up to a certified energy management system. The consistent
energy data collection is a prerequisite, in order to introduce an effective energy management in the company. The collection of all relevant energy data plays an important role for the improvement of energy consumption. The collection and analysis of the energy data can be submitted for the so-called peak balancing in accordance with § 55 Energy Tax Act and § 10 Electricity Tax Act. This allows companies to benefit from tax advantages and also save electricity tax.

Contents | Energy Controlling

Energy Controlling

1 Data logger | Multi I/O-Controller 12
2 Data logger | Accessories ... 14
3 M-Bus Components | Converter 15
4 M-Bus Components | M-Bus distributor 18
5 M-Bus Components | Software 19
6 M-Bus Components | Power supplier 20

Only three steps are necessary to take advantage of tax savings:
Step 1: Energy data acquisition - acquisition of energy flows and energy sources

Step 2: Analysis of the energy data and determination of important characteristic values

Step 3: Documentation of the energy consumed in the plants, machinery and equipment

The application for peak balancing must be submitted to an environmental verifier or an accredited certification body as proof of the introduction of an energy management system in accordance with DIN ISO 50001.

With the new $\mathrm{EWIO}_{2}-\mathrm{M}$ data logger and a large number of expansion modules, METZ CONNECT offers the optimum solution for a simple energy consumption data acquisition, and makes it easier for companies to introduce energy management.

Matching accessory for $\mathrm{EWIO}_{2}-\mathrm{M} / \mathrm{EWIO}_{2}-\mathrm{M}-\mathrm{BM}$

S0/M converter 4 fold 15

SO/M converter

 double-rateT/M converter 16
MYD IP65 18
MYD-1M1V 18
M-Bus CT software 19
Power supply NG4 gray 20

$\mathrm{EWIO}_{2}-\mathrm{M}$

(M-Bus)
The $\mathrm{EWIO}_{2}-\mathrm{M}$ is a powerful data logger for the energy consumption monitoring and energy monitoring in buildings, on machines, plants and systems. Two Ethernet ports with a Daisy Chain function are available for the chain further Data logger and connection to the LAN network. The system is parameterised, configured and commissioned through a platform-independent web browser. The M-Bus and Modbus RTU interfaces enable to read different meters: e.g. electricity, water, gas and heat. Optionally, the measured values can either be sent from the data base (push) or read out (pull) via mail (SSL) or FTP (SFTP). Simple functions and control tasks in building and industrial automation can be realized via the webinterface with the integrated digital and analog I/Os. An integrated μ SD memory card expands the range of functions of the $\mathrm{EWIO}_{2}-\mathrm{M}$ for save settings, data and applications.

Operating voltage	24 V DC +/- 10 \%
Power consumption (max.)	550 mA
Operating temperature	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Network	2 x RJ45 LAN 10/100BaseT (Daisy Chain)
Protocol	TCP/IP
Controller	NXP i.MX7D Dual Core ARM-A7, 1 GHz RAM 512 MB / Flash max. 32 GB / ext. 2 GB μ SD
Operating system	Linux embedded, Kernel 4.14, 32 Bit
Interfaces	Extension bus, max. 6 MR-I/O bus modules Modbus RTU, max. 32 participants M-Bus (DIN EN 13757-T1,2,3), max. 80 M -Bus charges
I/Os	$8 \times$ digital inputs $3 x$ analog universal inputs $8 x$ digital outputs $3 x$ analog outputs

P/N	Color	Feature 1	Feature 2
110930	black		

EWIO_{2}-M-BM

(M-Bus/BACnet/Modbus)
Das $\mathrm{EWIO}_{2}-\mathrm{M}-\mathrm{BM}$ is a powerful data logger for the energy consumption monitoring and energy monitoring in buildings, on machines, plants and systems. Two Ethernet ports with a Daisy Chain function are available for the chain furhter Data logger and connection to a LAN network. The EWIO $2-\mathrm{M}-\mathrm{BM}$ can be integrated into a Modbus TCP or BACnet/IP network to perform control tasks. The system is parameterised, configured and commissioned through a platform-independent web browser. The M-Bus and Modbus RTU interfaces enable to read different meters: e.g. electricity, water, gas and heat. Optionally, the measured values can either be sent from the data base (push) or read out (pull) via mail (SSL) or FTP (SFTP), from a BACnet or Modbus controller. The integrated digital and analog I/Os allow to realize different tasks in the building automation or industrial automation via a BACnet/Modbus control or the web interface. An integrated $\mu \mathrm{SD}$ memory card expands the range of functions of the $\mathrm{EWIO}_{2}-\mathrm{M}-\mathrm{BM}$ for save settings, data and applications.

Operating voltage
Power consumption (max.)
Operating temperature Network

Protocol Controller

Operating system Interfaces

I/Os

Wiring/Principle diagram

P/N	Color	Feature 1	Feature 2
110935	black		

Data logger | Multi I/O-Controller

Matching accessory for EWIO

WLAN / UMTS antenna 14
SO/M converter 4 fold 15
S0/M converter double-rate

T/M converter 16
MYD IP65 18
MYD-1M1V 18
M-Bus CT software 19
Power supply NG4 gray 20

EWIO - MW

(M-Bus/WLAN)
The $\mathrm{EWIO}_{2}-\mathrm{MW}$ is a powerful data logger for the energy consumption monitoring and energy monitoring in buildings, on machines, plants and systems. Two Ethernet ports with a Daisy Chain function for the chain further Data logger and a WLAN interface are available for the connection to the LAN or WLAN network. In addition, the WLAN interface can be used as an access point for the configuration with a mobile device (e.g. smartphone, tablet, notebook). The system is parameterised, configured and commissioned through a platform-independent web browser. The M-Bus and Modbus RTU interfaces enable to read different meters: e.g. electricity, water, gas and heat. Optionally, the measured values can either be sent from the data base (push) or read out (pull) via mail (SSL) or FTP (SFTP). The integrated digital and analog //Os allow to realize different tasks in the building automation or industrial automation via the web interface. An integrated $\mu \mathrm{SD}$ memory card expands the range of functions of the $\mathrm{EWIO}_{2}-\mathrm{MW}$ for save settings, data and applications.

Operating voltage	24 V DC +/-10 \%
Power consumption (max.)	550 mA
Operating temperature	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Network	2 x RJ45 LAN 10/100BaseT (Daisy Chain) WLAN, b/g/n, 2,4 GHz
Protocol	TCP/IP
Controller	NXP i.MX7D Dual Core ARM-A7, 1 GHz RAM 512 MB / Flash max. 32 GB / ext. 2 GB $\mu \mathrm{SD}$
Operating system	Linux embedded, Kernel 4.14, 32 Bit
Interfaces	Extension bus, max. 6 MR-I/O bus modules Modbus RTU, max. 32 participants M-Bus (DIN EN 13757-T1,2,3), max. 80 M -Bus charges
I/Os	$8 \times$ digital inputs $3 x$ analog universal inputs $8 x$ digital outputs $3 x$ analog outputs

Wiring/Principle diagram

P/N	Color	Feature 1	Feature 2
110931	black		

EWIO 2 -MW-BM

(M-Bus/WLAN/BACnet/Modbus)

The $\mathrm{EWIO}_{2}-\mathrm{MW}-\mathrm{BM}$ is a powerful data logger for the energy consumption monitoring and energy monitoring in buildings, on machines, plants and systems. Two Ethernet ports with a Daisy Chain function for the further Data logger and a WLAN interface are available for the connection to the LAN oder WLAN network. In addition, the WLAN interface can be used as an access point for the configuration with a mobile device (e.g. smartphone, tablet, notebook). The $\mathrm{EWIO}_{2}-\mathrm{MW}-\mathrm{BM}$ can be integrated into a Modbus TCP or BACnet/IP network to perform control tasks. The system is paramterised, configured ad commissioned through a platform-independent web browser. The M-Bus and Modbus RTU interfaces enable to read different meters: e.g. electricity, water, gas and heat. Optionally, the measured values can either be sent from the data base (push) or read out (pull) via mail (SSL) or FTP (SFTP), from a BACnet or Modbus controller. The integrated digital and analog I/Os allow to realize different tasks in the building automation or industrial automation via a BACnet/Modbus control or the web interface. An integrated $\mu \mathrm{SD}$ memory card expands the range of functions of the EWIO 2 -MW-BM for save settings, data and applications.

Operating voltage
Power consumption (max.)
Operating temperature Network

Protocol
Controller

Operating system
Interfaces

I/Os

Wiring/Principle diagram

P/N	Color	Feature 1	Feature 2
110934	black		

WLAN / UMTS antenna is matching accessory for Page
EWIO 2 -MW 13

EWIO $_{2}$-MW-BM 13
EWIO $_{2}$-MW 25
EWIO 2 -W-BM 25

WLAN / UMTS antenna

Antenna with cable for the Ethernet-I/O $\left(\mathrm{EWIO}_{2}\right)$ and Datenlogger ($\mathrm{EWIO}_{2}-\mathrm{M}$).

- SMA plug
- Antenna with magnetic base
- Diameter magnetic base approx. 29.0 mm
- Cable length including connection 2 m
- Cable diameter approx. 2.7 mm

P/N	Color	Feature 1	Feature 2
11094830			

M-Bus Components
Converter

Matching accessory for SO/M converter 4 fold and SO/M converter double-rate

Page

S0/M converter 4 fold

4-channel impulse counter for counting impulses that are generated by energy counters via reed contacts or passive transistor outputs (open collectors) in proportion to the energy measured. Impulses of any potential-free contacts can be recorded for counting, for example, events up to a frequency of 15 Hz .
The impulses generated by the energy counters are recorded by means of a standardized current interface to DIN EN 62053-31 class A. The 4-channel impulse counter occupies a clear M-Bus address specified by the manufacturer. Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

Protocol	M-Bus
Bus interface	Two-wire bus
Transmission rate	300 to $9600 \mathrm{bit} / \mathrm{s}$
Operating voltage	24 V DC +/-10 \% (SELV)
Current consumption	50 mA DC
Inputs	$4 \times$ S0 according to
Display	green LED flashes at incoming pulse
Dimensions (W x H x D	$50 \times 69.3 \times 60 \mathrm{~mm}$
Weight	approx. 70 g
Operating temperature range	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$
Ingress protection for housing / terminal block	IP40 / IP20

Wiring/Principle diagram

P/N	Color	Feature 1	Feature 2
110556	gray		

S0/M converter double-rate

Pulse counter to count pulses that are generated by energy counters via reed contacts or passive transistor outputs (open collector) in proportion to the measured energy. The device has 2 single SO inputs and a third switchable SO pulse input to record for example double rate meters. It is also possible to collect pulses from any potential-free contact to count for example events up to a frequency of 15 Hz . The pulses generated by the energy counters are recorded by means of a standardized current interface to DIN EN 62053-3. The pulse counter is feeding the pulse generator that works like a passive two-pole with a direct voltage of 24 V and with a current between 10 and 27 mA for the switching state ON (active) and with 0 to 2 mA for the switching state OFF (passive). The input ST+/ST- is a double rate meter input that stores the SO pulses of a counter in the counter register T1 or T2 depending on the wiring of input SE/SV.
Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

Protocol
Transmission rate
Operating voltage
Current consumption
Inputs

Display
Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing / IP40 / IP20
terminal block

Wiring/Principle diagram

P/N	Color	Feature 1	Feature 2
11055601	gray		

Matching accessory for S0／M converter－IP65 and T／M converter

Page
Power supply NG4 gray
20

S0／M converter－IP65

Pulse counter to count pulses that are generated by energy counters via reed contacts or passive transistor outputs（open collector）in proportion to the measured energy．The device in an IP65 housing has 2 single S0 inputs and a third switchable SO pulse input to collect for example double rate meters．It is also possible to collect pulses from any potential－free contact to count for example events up to a frequency of 15 Hz ．The pulses generated by the energy counters are recorded by means of a standardized current interface to DIN EN 62053－3． The pulse counter is feeding the pulse generator that works like a passive two－pole with a direct voltage of 24 V and with a current between 10 and 27 mA for the switching state ON （active）and with 0 to 2 mA for the switching state OFF （passive）．The input ST＋／ST－is a double rate meter input that stores the S0 pulses of a counter in the counter register T1 or T2 depending on the wiring of input $S E / S V$ ．

Protocol	M－Bus
Transmission rate	300 to $9600 \mathrm{bit} / \mathrm{s}$
Operating voltage	24 V DC
Current consumption	50 mA
Inputs	$3 \times \mathrm{SO}$ according to DIN EN 62053－31 Class A
Display	LED
Dimensions（W \times H x D $)$	$159 \times 41.5 \times 12 \mathrm{~mm}$
Weight	about 294 g
Operating temperature range	$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing／ terminal block	IP65／IP20

Dimensional drawing

E 9

P／N	Color	Feature 1	Feature 2
11055601IP	gray		

T／M converter

Temperature converter to connect up to four different resis－ tance temperature sensors in dual cable technology with a resolution in 0.1 K ．The addressing of the four temperature sensors is done via four M－Bus addresses according to M－Bus standard DIN EN－1434－3．The temperature is directly converted in the device．The temperature converter occupies four clear M－Bus addresses specified by the manufacturer．It is possible to set for each channel one of eleven stored temperature sensor characteristics with the M－Bus configuration tool（www．metz－ connect．com）or to transmit the resistance value directly． The cable length compensation is done with the push－button assigned to the respective temperature input． The factory setting is：$-30^{\circ} \mathrm{C}$ to $+130^{\circ} \mathrm{C} / \mathrm{PT} 1000$ ．

Selectable characteristics $-30^{\circ} \mathrm{C}$ to $+130^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+400^{\circ} \mathrm{C}$
Resistance value
Protocol
Bus interface
Transmission rate
Operating voltage
Current consumption
Inputs

Display
Dimensions（W x H x D）
Weight
Operating temperature range
Storage temperature range Ingress protection for housing／ terminal block

Wiring／Principle diagram

$\stackrel{+}{\square}$					กิ์		$\stackrel{+}{\text {＋}}$	안
T01＋T01－．．．T04＋T04－ temperature inputs 24V GND operating voltage $\mathbf{M + M} \mathbf{M}+\mathbf{M}-$ M－Bus interface								
\pm	\sum	${ }^{+}$	Σ		芫	令	方	\sum_{0}

sensor
PT100，PT500，PT1000，
Ni100，Ni1000，NTC1k8，
NTC10k，NTC20k，KTY10
PT100，PT1000
index＝ 1 （all sensors）
M－Bus
two－wire bus
300 to $9600 \mathrm{bit} / \mathrm{s}$
24 V DC（SELV）
50 mA DC
$4 x$ temperature input
（see selectable characteristics
or resistance input
40 to 4 MOhm）
LED
$50 \times 69.3 \times 60 \mathrm{~mm}$
approx． 70 g
$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ IP40／IP20

P／N	Color	Feature 1	Feature 2
110562	gray		

Matching accessory for T/M converter-IP65

Power supply NG4 gray

T/M converter-IP65

Temperature converter with an IP65 housing to connect up to four different resistance temperature sensors in dual cable technology with a resolution in 0.1 K . The addressing of the four temperature sensors is done via four M-Bus addresses according to M-Bus standard DIN EN-1434-3. The temperature is directly converted in the device. The temperature converter occupies four clear M-Bus addresses specified by the manufacturer. It is possible to set for each channel one of eleven stored temperature sensor characteristics with the M-Bus configuration tool (www.metz-connect.com) or to transmit the resistance value directly. The cable length compensation is done with the push-button assigned to the respective temperature input. The factory setting is: $-30^{\circ} \mathrm{C}$ to $130^{\circ} \mathrm{C} / \mathrm{PT} 1000$. Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

Selectable characteristics	sensor
$-30^{\circ} \mathrm{C}$ to $+130^{\circ} \mathrm{C}$	PT100, PT500, PT1000,
	Ni100, Ni1000, NTC1 k8,
	NTC10k, NTC20k, KTY10
$0^{\circ} \mathrm{C}$ to $+400^{\circ} \mathrm{C}$	PT100, PT1000
Resistance value	index $=1$ (all sensors)
Protocol	M-Bus
Bus interface	Two-wire bus
Transmission rate	300 to 9600 bit/s
Operating voltage	$24 \mathrm{~V} \mathrm{DC} \mathrm{(SELV)}$
Current consumption	50 mA DC
Inputs	$4 \times$ temperature input
	$($ see selectable characteristics
	or resistance input
	40 to 4 MOhm$)$
Display	LED
Dimensions (W x H x D)	$159 \times 41.5 \times 120 \mathrm{~mm}$
Weight	approx. 350 g
Operating temperature range	$-5{ }^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing /	IP65
terminal block	

Wiring/Principle diagram

P/N	Color	Feature 1	Feature 2
110562 IP	gray		

MYD IP65

The M-Bus distributor in a flush-mount IP65 housing is used in structured M-Bus cabling as well as in servicing and maintaining the operation of M -Bus structures.

- Detachable spring clamp terminal blocks with printed contact designation
- Color of contact housing same as wire color of the M-Bus cable J-Y(St)Y
- Voltage supply possible at the spring clamp terminal blocks
- Uninterrupted M-Bus current measurement possible
- Sealable cover with quick release fasteners

Protocol
Bus interface
Transmission rate
Rated voltage
Rated current
M-Bus voltage
M-Bus current
Cable cross section
Wire cross section
Outputs

Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing /
terminal block

M-Bus, free topology MYD (free-topology bus)
300 to $38400 \mathrm{bit} / \mathrm{s}$
24 V
10 A
36 V
500 mA
$1.5 \mathrm{~mm}^{2}$
$0.321-1.29 \mathrm{~mm}^{2}$ AWG $28-16$
$4 \times \mathrm{M}$-Bus
$4 \times$ voltage supply
$160 \times 40.7 \times 120 \mathrm{~mm}$
330 g
$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
IP65 / IP20

P/N	Color	Feature 1	Feature 2
11056301	grau		
11056302	grau		

P/N	Color	Feature 1	Feature 2
11056303	green		

MYD-1M1V

The M-Bus distributor is used in structured M-Bus cabling as well as in servicing and maintaining the operation of M-Bus structures. Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

- Detachable spring clamp terminal blocks with printed contact designation
- Color of contact housing same as wire color of the M-Bus cable J-Y(St)Y
- Voltage supply possible at the spring clamp terminal blocks
- Uninterrupted M-Bus current measurement possible

Protocol	M-Bus, free topology
Bus interface	MYD (free-topology bus)
Transmission rate	300 to $38400 \mathrm{bit} / \mathrm{s}$
Rated voltage	24 V
M-Bus voltage	36 V
M-Bus current	500 mA
Cable cross section	$1.5 \mathrm{~mm}{ }^{2}$
Wire cross section	$0.321-1.29 \mathrm{~mm}^{2}$ AWG $28-16$
Outputs	$2 \times \mathrm{M}$-Bus
	$2 \times$ voltage supply
	$45 \times 82.4 \times 47 \mathrm{~mm}$
Dimensions (W x H x D)	53 g
Weight	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Operating temperature range	
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing /	$\mathrm{IP20} / \mathrm{IP20}$
terminal block	

terminal block

Wiring/Circuit diagram

M-Bus CT software is matching accessory for

S0/M converter 4 fold 15
T/M converter

M-Bus CT software

The MBus-CT software is used for the simple and uncomplicated commissioning of M -Bus devices. The functional scope of this configuration and parameterisation software also includes the specification of primary addresses, baud rates and temperature characteristics. Thereby, it doesn't matter whether there are one or more M-Bus stations on the bus. Through the scan function, the software can also be used as a diagnostics tool.

The software does not require any installation. It can be copied to any location on the PC or a removable drive (e.g. USB stick) and started from there. An M-Bus master (level converter), which is connected to an interface of the PC (COM, USB), is required to physically reach the M-Bus participants.

Minimum system requirements: WinXP (32/64 bit), Win7 (32/64 bit), M-Bus master (level converter).

P/N	Color	Feature 1	Feature 2
www.metz- connect.com			

Matching accessory for NG4

Matching accessory for	
NG4	
Terminal block for I/O Components	71
Jumper plug for I/O components	71

We realize ideas

I/O components

I/O components with BACnet/IP, Modbus TCP, BACnet MS/TP-, Modbus RTU, M-Bus,
LON ${ }^{\text {®- }}$ and CAN technologies
Automation of buildings, machines and systems

In order to safely and efficiently operate today not only large but also small buildings, it has become indispensable to automate the most important service functions such as monitoring, air conditioning and lighting systems. This, however, leads to rising demands in terms of building installation, which in general can no longer be met by conventional techniques.

This is the reason why building automation relies ever more on serial bus systems controlling the transmission of information between sensors and actuators, switches and higher control systems.

Contents | I/O components

I/O components
1 Ethernet I/Os | Multi I/O controller 24
2 Modbus RTU I/Os | Digital input 26
3 Modbus RTU I/Os | Analog input 29
4 Modbus RTU I/Os | Digital output 31
5 Modbus RTU I/Os | Analog output 33
6 Modbus RTU I/Os | Mixed Modules 34
7 Modbus RTU I/Os | Accessories 38
8 Modbus RTU I/Os | Software 40
9 Modbus RTU I/Os | Power supplier 41
10 BACnet MS/TP I/Os | Digital input 42
11 BACnet MS/TP I/Os | Analog input 44
12 BACnet MS/TP I/Os | Digital output 45
13 BACnet MS/TP I/Os | Analog output 46
14 BACnet MS/TP I/Os | Mixed Modules 47
15 BACnet MS/TP I/Os | BACnet Router 50
16 BACnet MS/TP I/Os | Power supplier 51
17 LON FT I/Os | Digital input 52
18 LON FT I/Os | Analog input 55
19 LON FT I/Os | Digital output 56
20 LON FT I/Os | Analog output 58
21 LON FT I/Os | Mixed Modules. 59
22 LON FT I/Os | Connecting module 62
23 LON FT I/Os | Power supplier 63
24 LON FT I/Os | Software 64
25 LON FT I/Os | Interface/Adapter 65
26 CAN I/Os | Digital input 66
27 CAN I/Os | Analog input 67
28 CAN I/Os | Digital output 68
29 CAN I/Os | Analog output 69
30 CAN I/Os | Power supplier 70
31 Accessories | Connection aids. 71

These bus systems offer different advantages:

- ease of planning and installing of building functions
- strong flexibility in the use of buildings since functions can be programmed freely and can thus be re-configured at any time.

Thanks to the availability of microcontrollers and to the reduction of the sizes and prices of the installed electronic components, automation has now also found its way into areas, which due to the implied costs were not suited for field bus solutions before. In particular in the linking of sensors, actuators and control units within machines and of devices used for measuring, control and monitoring systems, serial bus systems offer strong advantages.

Matching accessory for $\mathrm{EWIO}_{2} / \mathrm{EWIO}_{2}-\mathrm{BM}$

Power supply NG4 gray	20
Terminal block for I/O Components	71
Jumper plug for I/O components	71

EWIO_{2}

(Ethernet-l/O)
The EWIO_{2} is a compact Ethernet I/O controller based on Linux, which connects digital and analouge signals from the sensor and actuator level with an IP network. Simple tasks in building and industrial automation can be implemented with logic functions integrated onto the webserver. Immediately executable applications can also be created via the web interface in a displayed Linux Shell. Two Ethernet-Ports with a Daisy Chain function are available for the connection to the LAN network. The system is parameterised, configured and commissioned through a platform-independent web browser. For the upgrade of the sensor/actuator level, MR-I/O upgrade modules can be connected using plug \& play jumper plugs and wiring to a second interface of EWIO_{2}, Modbus RTU devices. An integrated $\mu \mathrm{SD}$ memory card expands the range of functions of the EWIO_{2} for save settings, data and applications.

Operating voltage
Power consumption (max
Operating temperature Network

Protocol
Controller

Operating system

Interfaces

I/Os

P/N	Color	Feature 1	Feature 2
110905	black		

24 V DC +/- 10 \% 400 mA
$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
2 x RJ45 LAN 10/100BaseT (Daisy Chain) TCP/IP
NXP i.MX7D Dual Core ARM-A7, 1 GHz RAM 512 MB / Flash max. 32 GB / ext. 2 GB $\mu \mathrm{SD}$ Linux embedded,
Kernel 4.14, 32 Bit
Extension bus,
max. 6 MR-I/O bus modules Modbus RTU,
max. 32 participants
$8 \times$ digital inputs
$3 x$ analog universal inputs
$10 \times$ digital outputs
$3 x$ analog outputs

$\mathrm{EWIO}_{2}-\mathrm{BM}$

(Ethernet-l/O/BACnet/Modbus)
Depending on the configuration, the $\mathrm{EWIO}_{2}-\mathrm{BM}$ is a compact Modbus and/or BACnet Server, which connects digital and analouge signals from the sensor and actuator level with a Modbus TCP and/or BACnet IP network. With a Modbus or BACnet Client, various tasks can be realised in building and industrial automation. Simple automation tasks can be implemented with an integrated logic function. Two Ethernet Ports with a Daisy Chain function are available for the connection to the LAN network and the chain further Ethernet I/O devices. The system is parameterised, configured and commissioned through a platform-independent web browser. For the upgrade of the sensor/actuator level, MR-I/O upgrade modules can be connected using plug \& play jumper plugs and wiring to a second interface of $\mathrm{EWIO}_{2}-\mathrm{BM}$, Modbus RTU devices. An integrated $\mu \mathrm{SD}$ memory card expands the range of functions of the $\mathrm{EWIO}_{2}-\mathrm{BM}$ for save settings, data and applications.

Operating voltage
Power consumption (max.) Operating temperature Network

Protocol
Controller

Operating system

Interfaces

I/Os

Wiring/Principle diagram

400 mA

24 V DC +/- 10 \%
$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$2 \times$ RJ45 LAN 10/100BaseT (Daisy Chain)
TCP/IP, BACnet/IP, Modbus TCP
NXP i.MX7D Dual Core
ARM-A7, 1 GHz
RAM 512 MB / Flash
max. $32 \mathrm{~GB} /$ ext. $2 \mathrm{~GB} \mu \mathrm{SD}$
Linux embedded,
Kernel 4.14, 32 Bit
Extension Bus, max. 6 MR-I/O bus modules Modbus RTU,
max. 32 participants
$8 x$ digital inputs
$3 x$ analog universal inputs
$10 \times$ digital outputs
$3 x$ analog outputs

P/N	Color	Feature 1	Feature 2
110904	black		

Ethernet I/Os
Multi I/O controller

Matching accessory for EWIO_{2}-W / EWIO ${ }_{2}$-W-BM

WLAN / UMTS antenna

Power supply NG4 gray 20

Terminal block for I/O Components 71

Jumper plug
for I/O components

Matching accessory for MR-DI4

	Page
Power supply NG4 gray	20
Terminal block for I/O Components	71
Jumper plug for I/O components	71

Matching accessory for MR-DI4-IP65

Power supply NG4 gray

MR-DI4

 the front or by software.Protocol
Address range
Bus interface
Transmission rate
Operating voltage
Current consumption
Relative duty cycle
Inputs
Input / voltage
Input / high signal
Display
Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing /
terminal block

Wiring/Principle diagram

Modbus RTU
00 to 99
RS485 (two-wire bus)
1200 to $115200 \mathrm{bit} / \mathrm{s}$ $24 \mathrm{~V} \mathrm{AC/DC}+/-10 \%$ (SELV)
$50 \mathrm{~mA}(\mathrm{AC}) / 20 \mathrm{~mA}$ (DC) 100 \%
$4 \times$ digital
30 V AC/DC
more than $7 \mathrm{~V} \mathrm{AC/DC}$
Green, red and yellow LED
$35 \times 69.3 \times 60 \mathrm{~mm}$
95 g
$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
IP40 / IP20
(

The Modbus module with 4 digital inputs was developed for decentralized switching tasks. It is suitable for detecting poten-tial-free switch states, for example electrical limit switches on vent valves or auxiliary contacts of power contactors. The inputs can be operated by means of potential-free switches or contacts or used as voltage inputs. The inputs can be scanned by means of standard registers via a Modbus master. Module address, bit rate and parity are set with two rotary switches on

Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

MR-DI4-IP65

The Modbus module in an IP65 housing with 4 digital inputs was developed for decentralized switching tasks. It is suitable for detecting potential-free switch states from electrical limit switches and their external status display such as fire dampers or vent valves. The inputs can be operated by means of potential-free switches or contacts or used as voltage inputs.
The inputs can be scanned by means of standard registers via a Modbus master. Module address, bit rate and parity are set with two rotary switches or by software.

Protocol	Modbus RTU
Address range	00 to 99
Bus interface	RS485 (two-wire bus)
Transmission rate	1200 to $115200 \mathrm{bit} / \mathrm{s}$
Operating voltage	24 V AC/DC +/-10 \% (SELV)
Current consumption	50 mA (AC) / 20 mA (DC)
Relative duty cycle	100 \%
Inputs	4 x digital
Input / voltage	30 V AC/DC
Input / high signal	more than 7 V AC/DC
Display	Green, red and yellow LED
Dimensions (W x H x D	$160 \times 40.7 \times 120 \mathrm{~mm}$
Weight	300 g
Operating temperature range	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$
Ingress protection for housing / terminal block	IP65 / IP20

Wiring/Principle diagram

P/N	Color	Feature 1	Feature 2
1108341319	gray	4x IN (U or contact)	

P/N	Color	Feature 1	Feature 2
1108341319 IP	gray	$4 \times$ IN (U or contact)	

Matching accessory for MR-DI4-IP65 with external display

Page
Power supply NG4 gray 20

Matching accessory for MR-DI10

	Page
Power supply NG4 gray	20

Terminal block for I/O Components

Jumper plug for I/O components

MR-DI4-IP65 with external display
The Modbus module in a surface mounting housing with 4
 digital inputs was developed for decentralized switching tasks. It is suitable for detecting potential-free switch states from electrical limit switches and their external status display such as fire dampers or vent valves. The inputs can be operated by means of potential-free switches or contacts or used as voltage inputs. The inputs can be scanned by means of standard registers via a Modbus master. Module address, bit rate and parity are set with two rotary switches or by software. The device has two externally connectable display modules.

Protocol	Modbus RTU
Address range	00 to 99

Bus interface
Transmission rate
Operating voltage
Current consumption
Relative duty cycle
Inputs
Input / voltage
Input / high signal
Display (internal)
Display (external)

Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing / IP20 / IP20
terminal block 100 \% $4 \times$ digital
30 V DC multi color LED

300 g
$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

00 to 99 RS485 (two-wire bus) 1200 to $115200 \mathrm{bit} / \mathrm{s}$ 24 V AC/DC +/- 10 \% (SELV) $50 \mathrm{~mA}(\mathrm{AC}) / 20 \mathrm{~mA}$ (DC)
more than 7 V AC/DC Green, red and yellow LED
$160 \times 40.7 \times 120 \mathrm{~mm}$
,

Wiring/Principle diagram

P/N	Color	Feature 1	Feature 2
110834131901 IP	gray	$4 \times$ IN (U or contact)	

MR-DI10

The Modbus module with 10 digital inputs was developed for decentralized switching tasks. It is suitable for detecting po-tential-free switch states, for example electrical limit switches on vent valves or auxiliary contacts of power contactors. The inputs can be used as contact or voltage inputs. The inputs can be scanned by means of standard registers via a Modbus master. Module address, bit rate and parity are set with two rotary switches on the front or by software.
Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

Protocol
Address range
Bus interface
Transmission rate
Operating voltage
Current consumption
Relative duty cycle
Inputs
Input / voltage
Input / high signal
Display
Dimensions (W $\mathrm{WH} \times \mathrm{D}$)
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing /
terminal block

Wiring/Principle diagram

P/N	Color	Feature 1	Feature 2
1108311319	gray	$10 x$ IN (U or contact)	

Matching accessory for MR-SI4

	Page
Power supply NG4 gray	20
Terminal block for I/O Components	71
Jumper plug for I/O components	71

MR-SI4

The Modbus module with 4 S0 inputs to DIN EN 62053-31 class A was developed for decentralized switching tasks. It is suitable for counting SO counter pulses. This allows very good integration of the module into an energy controlling system. In case of a power failure, the last counter readings are saved. The inputs can be scanned by means of standard registers via a Modbus master. Module address, bit rate and parity are set with two rotary switches on the front or by software. Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

Protocol	Modbus RTU
Address range	00 to 99
Bus interface	RS485 (two-wire bus)
Transmission rate	1200 to $115200 \mathrm{Bit} / \mathrm{s}$
Operating voltage	20 V to 28 V AC/DC (SELV)
Current consumption	170 mA (AC) / 65 mA (DC)
Relative duty cycle	100 \%
Inputs	$4 \times$ S0 input, class A
Input / acc. to standard	DIN EN 62053-31
Display	Green, red and yellow LED
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)	$35 \times 69.3 \times 60 \mathrm{~mm}$
Weight	83 g
Operating temperature range	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing / terminal block	IP40 / IP20

Wiring/Principle diagram

$24 \mathrm{VAC} / 170 \mathrm{~mA}$
24 V DC / 65 mA
GND, Class 2

P/N	Color	Feature 1	Feature 2
11083913	gray	$4 \times$ IN (S0 impulse)	

Matching accessory for MR-AI8

	Page
Power supply NG4 gray	20
Terminal block	
for I/O Components	71
Jumper plug	
for I/O components	71

Matching accessory for

 MR-Cl4Page
Power supply NG4 gray 20
Terminal block for I/O Components

Jumper plug

for I/O components

MR-AI8

The Modbus module with 8 individually configurable resistance or voltage inputs was developed for decentralized switching tasks. It is suitable for detecting resistances and voltages of, for example, passive and active temperature sensors, electrical vent and mixing valves, valve positions, etc. The inputs can be configured universally by means of standard registers via a Modbus master. Module address, bit rate and parity are set with two rotary switches on the front or by software. Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

Protocol
Address range
Bus interface
Transmission rate
Operating voltage
Current consumption
Relative duty cycle
Inputs
Input / resistance
Input / voltage
Input / resolution
Input / error
Display
Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range Ingress protection for housing /
terminal block

Wiring/Principle diagram

P/N	Color	Feature 1	Feature 2
11083213	gray	$8 \times \operatorname{IN}$ (U or R)	

Modbus RTU
00 to 99 RS485 (two-wire bus) 1200 to $115200 \mathrm{bit} / \mathrm{s}$ $24 \mathrm{~V} \mathrm{AC/DC}+/-10$ \% (SELV) 65 mA (AC) / 25 mA (DC) 100 \%
8 x individually configurable 40 Ohm to 4 MOhm 0 to 10 V DC
10 mV (0 to 100%) approx. +/- 100 mV
Green and red LED
$50 \times 69.3 \times 60 \mathrm{~mm}$
104 g
$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ IP40 / IP20

P/N	Color	Feature 1	Feature 2
1108401332	gray	$4 \times$ IN (U or I) activ	

Protocol
Address range
Bus interface
Transmission rate
Operating voltage
Current consumption
Relative duty cycle Inputs
Input / voltage (U1-U4)
Input / resolution Input / error
Input / current (11-I4)
Input / resolution
Input / error
Display
Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing /
terminal block
Wiring/Principle diagram

14 U4	4-	13	U3	3-
1- U1	11	2-	U2	12

Modbus RTU
00 to 99
RS485 (two-wire bus)
1200 to $115200 \mathrm{Bit} / \mathrm{s}$
24 V AC/DC +/- 10 \% (SELV)
25 mA (AC) / 10 mA (DC)
100 \%
$4 x$ analog
0 V to 10 V DC
1 mV (0 to 100 \%)
10 mV
0 (4) to 20 mA DC
$2 \mu \mathrm{~A}$
$20 \mu \mathrm{~A}$
Green, red LED
$35 \times 69.3 \times 60 \mathrm{~mm}$
84 g
$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ IP40 / IP20

MR-CI4
The Modbus module with 4 analog inputs was developed for decentralized switching tasks. It is suitable for detecting currents and voltages of, for example, active temperature sensors, electrical vent and mixing valves, valve positions, etc. Each input can be set as current or voltage input by DIP switches on the front. The inputs can be scanned with standard registers via a Modbus master. The module address, the baud rate and the parity are set with two rotary switches on the front or by software.
Suitable for decentralized mounting on TH35 rails according to IEC 60715 in electrical distribution cabinets.

Matching accessory for MR-SM3

	Page
Power supply NG4 gray	20
Terminal block for I/O Components	71
Jumper plug for I/O components	71

MR-SM3
The module MR-SM3 is a smart meter component for building automation. Current, voltage, power and many other values can be captured by three 230 Volt current circuits. In addition, the device provides monitoring functions of for example asymmetry, phase failure, phase sequence, overvoltage and undervoltage. These values can be queried via a Modbus-
Master. Module address, bit rate and parity are set with two rotary switches on the front or by software.
Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

Protocol	Modbus RTU
Address range	00 to 99
Bus interface	RS485 (two-wire bus)
Transmission rate	1200 to $115200 \mathrm{bit} / \mathrm{s}$
Operating voltage	$24 \mathrm{~V} \mathrm{AC/DC} \mathrm{+/-10} \mathrm{\%} \mathrm{(SELV)}$
Current consumption	$108 \mathrm{~mA}(\mathrm{AC}) / 50 \mathrm{~mA}$ (DC)
Relative duty cycle	100%
Inputs	$3 \times$ analog
Input / voltage	$230 \mathrm{~V} \mathrm{AC}-20$ to $+15 \%$
Input / voltage range	184 to 265 V AC
Input / current	0 to 16 A AC
Display	LED green, red
Dimensions (W x H x D)	$50 \times 69.3 \times 60 \mathrm{~mm}$
Weight	110 g
Operating temperature range	$-5{ }^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing /	$\mathrm{IP} 40 / \mathrm{IP} 20$
terminal block	

Wiring/Principle diagram

P/N	Color	Feature 1	Feature 2
11084113	gray		

Matching accessory for MR-DO4

	Page
Power supply NG4 gray	20
Terminal block	
for I/O Components	71
Jumper plug	
for I/O components	71

Matching accessory for MR-DOA4

Power supply NG4 gray 20
Terminal block for I/O Components

Jumper plug

for I/O components

MR-DO4

The Modbus module with 4 digital outputs was developed for decentralized switching tasks. It is suitable for switching electrical components, such as motors, contactors, lamps, louvers, etc. In this case it is necessary to protect the relay contacts by appropriate load-dependent measures. The module is provided with a manual control for manually switching the relays. The outputs can be switched by means of standard registers via a Modbus master. Module address, bit rate and parity are set with two rotary switches on the front or by software.
Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

Protocol	Modbus RTU
Address range	00 to 99
Bus interface	RS485 (two-wire bus)
Transmission rate	1200 to $115200 \mathrm{bit} / \mathrm{s}$
Operating voltage	$24 \mathrm{~V} \mathrm{AC/DC} \mathrm{+/-10} \mathrm{\%} \mathrm{(SELV)}$
Current consumption	$200 \mathrm{~mA}(\mathrm{AC}) / 70 \mathrm{~mA}$ (DC)
Relative duty cycle	100%
Output / contacts	4 changeover contacts (4PDT)
Output / switching voltage	250 V AC
Output / continuous current	$5 \mathrm{~A} /$ output
Output / switching frequency	360 cycles $/ \mathrm{h}$
Display	Green, red and yellow LED
Dimensions (W x H x D)	$35 \times 69.3 \times 60 \mathrm{~mm}$
Weight	95 g
Operating temperature range	$-5{ }^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing /	$\mathrm{IP} 40 / \mathrm{IP} 20$
terminal block	

Wiring/Principle diagram

42	41	14	432	3231		34
11		412	221	2124	24	22

P/N	Color	Feature 1	Feature 2
110836132101	gray	$4 \times$ OUT (relay CO)	

Wiring/Principle diagram

4241	41	44	32	31	
1114	14	12	21	24	

P/N	Color	Feature 1	Feature 2
1108361321	gray	4x OUT (relay CO)	manual/ automatic

MR-DOA4

The Modbus module with 4 digital outputs was developed for decentralized switching tasks. It is suitable for switching electrical components, such as motors, contactors, lamps, louvers, etc. In this case it is necessary to protect the relay contacts by appropriate load-dependent measures. The outputs can be switched by means of standard registers via a Modbus master. Module address, bit rate and parity are set with two rotary switches on the front or by software. Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

Protocol
Address range
Bus interface
Transmission rate
Operating voltage
Current consumption
Relative duty cycle
Output / contacts
Output / switching voltage
Output / continuous current
Output / switching frequency
Display

Dimensions (W x H x D) $35 \times 69.3 \times 60 \mathrm{~mm}$
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing / IP40/IP20
terminal block
Modbus RTU
00 to 99
RS485 (two-wire bus)
1200 to $115200 \mathrm{Bit} / \mathrm{s}$
$24 \mathrm{~V} \mathrm{AC/DC}+/-10$ \% (SELV)
200 mA (AC) / 70 mA (DC)
100 \%
4 changeover contacts (4PST)
250 V AC
5 A/ output
360 cycles/h
Green, red and yellow LED

95 g
$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ terminal block

Matching accessory for MR-TO4

Power supply NG4 gray 20
Terminal block for I/O Components 71

Jumper plug for I/O components $\quad 71$

MR-TO4

The Modbus module with 4 digital triac outputs was developed for decentralized switching tasks. It is suitable for switching electrical components, such as relays, contactors, HVAC valves, etc.
The outputs can be switched by means of standard registers via a Modbus master. In addition, the outputs can be overridden manually by means of switches on the device. Module address, bit rate and parity are set with two rotary switches on the front or by software.
Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

Protocol	Modbus RTU
Address range	00 to 99
Bus interface	RS485 (two-wire bus)
Transmission rate	1200 to $115200 \mathrm{bit} / \mathrm{s}$
Operating voltage	$24 \mathrm{~V} \mathrm{AC/DC}+/-10 \%$ (SELV)
Current consumption	$100 \mathrm{~mA}(\mathrm{AC}) / 40 \mathrm{~mA}$ (DC)
Relative duty cycle	100%
Output / contacts	4 digital outputs (triac)
Output / switching voltage	24 V AC up to max. 250 V AC
Output / continuous current	$0.5 \mathrm{~A} /$ output
Output / switching current	0.8 A (less than 30 s)
Output / switch-on current	10 A (less than 20 ms)
Display	Green, red and yellow LED
Dimensions (W x H x D)	$35 \times 69.3 \times 60 \mathrm{~mm}$
Weight	95 g
Operating temperature range	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing /	$\mathrm{IP} 40 / \mathrm{IP20}$
terminal block	

Wiring/Principle diagram

P/N	Color	Feature 1	Feature 2
11083013	gray	4x OUT (triac)	

Matching accessory for MR-AOP4

	Page
Power supply NG4 gray	20
Terminal block for I/O Components	71
Jumper plug for I/O components	71
Matching accessory for MR-AO4	
Power supply NG4 gray	20
Terminal block for I/O Components	71
Jumper plug for I/O components	71

MR-AOP4

The Modbus module with 4 analog outputs was developed for decentralized switching tasks. It is suitable as encoder for control variables, for example for electrical vent and mixing valves, valve positions, etc.
The outputs can be output by means of standard registers via a Modbus master. Each output can be set for automatic or manual operation by means of 4 potentiometers at the front. Module address, bit rate and parity are set with two rotary switches on the front or by software.
Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

Protocol
Address range
Bus interface
Transmission rate
Operating voltage
Current consumption
Relative duty cycle
Outputs
Output / voltage
Output / current
Output / resolution
Display
Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing /
terminal blocks

Wiring/Principle diagram

	C2		C2	3
	C2		c2	

$\mathrm{A} 2=\mathrm{C} 2=\mathrm{GND}$

P/N	Color	Feature 1	Feature 2
1108371302	gray	4x OUT (U)	manual/ automatic

MR-AO4
The Modbus module with 4 analog outputs was developed for decentralized switching tasks. It is suitable as encoder for control variables, for example for electrical vent and mixing valves, valve positions, etc.
The outputs can be output by means of standard registers via a Modbus master. Module address, bit rate and parity are set with two rotary switches on the front or by software. Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

Protocol

Wiring/Principle diagram

Address range
Bus interface
Transmission rate
Operating voltage
Current consumption
Relative duty cycle
Outputs
Output / voltage
Output / current
Output / resolution
Display
Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing /
terminal blocks
00 to 99
RS485 (two-wire bus)
1200 to $115200 \mathrm{bit} / \mathrm{s}$ $24 \mathrm{~V} \mathrm{AC/DC}+/-10$ \% (SELV) $50 \mathrm{~mA}(\mathrm{AC}) / 20 \mathrm{~mA}$ (AC) 100 \%
$4 \times$ analog
0 V to 10 V DC
5 mA to 10 V DC
$10 \mathrm{mV} /$ Digit
Green and red LED
$35 \times 69.3 \times 60 \mathrm{~mm}$
72 g
$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ IP40 / IP20
$5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ IP40 / IP20

$\mathrm{A} 2=\mathrm{C} 2=\mathrm{GND}$

P/N	Color	Feature 1	Feature 2
1108351302	gray	4x OUT (relay CO)	

Matching accessory for MR-Multi-I/O

	Page
Power supply NG4 gray	20
Terminal block for I/O Components	71
Jumper plug for I/O components	71

Matching accessory for MR-AIO4/2-IP65

MR-Multi-I/O

The Modbus module MR-Multi I/O is a compact and rapidly to install solution to connect digital and analog signals from the actor and sensor level directly to a control unit in building automation via Modbus RTU protocol. 29 I/Os, some of them are configurable, are available for different tasks. With strong inductive loads, we recommend protecting the relay contacts with an RC element. The inputs and outputs can be switched and scanned by means of standard registers via a Modbus master. Module address, bit rate and parity are set with two rotary switches on the front or by software.
Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

Protocol
Address range
Bus interface
Transmission rate
Operating voltage
Current consumption
Relative duty cycle
Inputs / digital
Input / SO
Inputs analog
for resistance or
for voltage
Input / current
Dimensions (W x H x D)

Weight
Operating temperature range
Storage temperature range
Protection class

Wiring/Principle diagram

Modbus RTU
00 to 99
RS485 (two-wire bus)
1200 bis $115200 \mathrm{Bit} / \mathrm{s}$
$24 \mathrm{~V} \mathrm{AC/DC}+/-10$ \% (SELV)
$220 \mathrm{~mA}(\mathrm{AC}) / 110 \mathrm{~mA}$ (DC)
100 \%
11 x Optocoupler, galvanically isolated
1 x per DIN EN 62053-31, Class A configurable 6×40 Ohm to 4 MOhm 6×0 to 10 V DC
1 x analog 0 to 20 mA DC $125 \times 93 \times 60.81 \mathrm{~mm}, 7$ TE, TH35
385 g
$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ IP20

P/N	Color	Feature 1	Feature 2
11084313	gray		

P/N	Color	Feature 1	Feature 2
11084213IP	gray	$4 \times$ IN (U or R)	

Matching accessory for MR-DIO4/2

	Page
Power supply NG4 gray	20
Terminal block	
for I/O Components	71
Jumper plug for I/O components	71

Matching accessory for MR-AIO4/2-IP65

MR-DIO4/2

The Modbus module with 4 digital inputs and 2 relay outputs with manual control was developed for decentralized switching tasks. It is suitable for accommodating, for example, light switches and window contacts in a room, switching two light strips or controlling louvers. It can also be used to control 2 motorized fire dampers. In this case it is necessary to protect the relay contacts by appropriate load-dependent measures. The inputs can be used as contact or voltage inputs. The inputs and outputs can be switched and scanned by means of standard registers via a Modbus master. Module address, bit rate and parity are set with two rotary switches on the front or by software.
Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

P/N	Color	Feature 1	Feature 2
1108331326	gray	$4 \times$ IN (U or contact)	$2 \times$ OUT (relay CO)
110833132601	gray	$4 \times$ IN (U or contact)	$2 \times$ OUT (relay NO)

Protocol

Address range
Bus interface
Transmission rate
Operating voltage
Current consumption
Relative duty cycle
Inputs
Input / voltage
Input / high signal
Output / contacts
Output / switching voltage
Output / continuous current
Output / switch-on current
Display
Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing / IP40/IP20
terminal blocks

Wiring/Principle diagram

Modbus RTU
00 to 99
RS485 (two-wire bus)
1200 to $115200 \mathrm{bit} / \mathrm{s}$
$24 \mathrm{~V} \mathrm{AC/DC}+/-10$ \% (SELV)
200 mA (AC) / 75 mA (DC)
100 \%
$4 \times$ digital
30 V DC
more than $8 \mathrm{~V} \mathrm{AC/DC}$
2 changeover contacts (DPDT)
250 V AC
16 A / output
80 A (less than 20 ms)
Green, red and yellow LED
$50 \times 69.3 \times 60 \mathrm{~mm}$
126 g
$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
C

MR-DIO4/2-IP65

The Modbus module in an IP65 housing with 4 digital inputs and 2 relay outputs was developed for decentralized switching tasks. It is suitable for accommodating, for example, light switches and window contacts in a room, switching two light strips or controlling louvers. It can also be used to control 2 motorized fire dampers. In this case it is necessary to protect the relay contacts by appropriate load-dependent measures. The inputs can be used as contact or voltage inputs. The inputs and outputs can be switched and scanned by means of standard registers via a Modbus master. Module address, bit rate and parity are set by means of two address switches.

P/N	Color	Feature 1	Feature 2
1108331326 IP	gray	$4 \times$ IN (U or contact)	$2 x$ OUT (relay CO)

Protocol
Address range
Bus interface
Transmission rate
Operating voltage
Current consumption
Relative duty cycle

Inputs

Input / voltage
Input / high signal
Output / contacts
Output / contacts
Output / continuous current (UL) 8 A / output
Output / continuous current (VDE) $10 \mathrm{~A} /$ output
Output / switch-on current 80 A (less than 20 ms)
Display
Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing
terminal blocks

Wiring/Principle diagram

Modbus RTU
00 to 99 RS485 (two-wire bus) 1200 to $115200 \mathrm{bit} / \mathrm{s}$ 24 V AC/DC +/- 10 \% (SELV) 200 mA (AC) / 75 mA (DC) 100 \% $4 \times$ digital 30 V DC more than 8 V AC/DC 2 changeover contacts (DPDT) 250 V AC Green, red and yellow LED $160 \times 40 \times 120 \mathrm{~mm}$ 350 g $-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ IP65 / IP20 ${ }^{\circ} \mathrm{C}$

Matching accessory for	
MR-DIO4/2-IP65 230 V Page Power supply NG4 gray 20 Matching accessory for MR-TP	

Matching accessory for MR-TP

Power supply NG4 gray 20
Terminal block
for I/O Components 71
Jumper plug
for I/O components

Page
, /O component

MR-DIO4/2-IP65 230 V

Modbus module inan IP65 housing with 4 digital inputs and 2 relay outputs with manual control was developed for decentralized switching tasks. It is suitable for accommodating, for example, light switches and window contacts in a room, switching two light strips or controlling louvers. It can also be used to control 2 motorized fire dampers. In this case it is necessary to protect the relay contacts by appropriate loaddependent measures. The inputs have to be connected to potentialfree contacts. The inputs and outputs can be switched and scanned by means of standard registers via a Modbus master. Module address, bit rate and parity are set with two rotary switches. Bit rate and parity are also set by software.

Protocol	Modbus RTU
Address range	00 to 99
Bus interface	RS485 two wire bus with potential equalization in bus or line topology terminate with 120 Ohm
Transmission rate	1200 to $115200 \mathrm{bit} / \mathrm{s}$, Factory setting $19200 \mathrm{bit} / \mathrm{s}$ Even
Operating voltage	$230 \mathrm{~V}+/-10$ \%
Current consumption	12 mA
Relative duty cycle	100 \%
Inputs Digital inputs	4
Voltage input	30 V AC/DC
High signal recognition	$>8 \mathrm{~V} \mathrm{AC/DC}$
Outputs Output contacts	2 changeover contacts (DPST)
Switching voltage max.	250 V AC
Continuous current max.	10 A per relay (65 A for 20 ms) max. current via terminal $\text { „11" } 10 \text { A) }$
Housing Dimensions W x H x D	$160 \times 40.7 \times 120 \mathrm{~mm}$
Weight	350 g
Mounting position	any
Mounting	directly on a flat surface 8 knock-out openings for M12 and M16 cable glands

Wiring/Principle diagram

P/N	Color	Feature 1	Feature 2
1108330526 P	gray		

P/N	Color	Feature 1	Feature 2
11083813	gray	$6 x$ IN (contact)	$2 x$ OUT (relay CO), $2 x$ OUT (opto NO)

Matching accessory for MR-LD6

Power supply NG4 gray 20
Leakage sensor LKS1, LKS-ZD 38

Submersible Electrode TE1 38
Terminal block for I/O Components 71

Jumper plug for I/O components

The Modbus module with 6 analog inputs and 2 relay outputs was developed for decentralized switching tasks. Suitable to monitor electrodes of leakage sensors or the fill level of fluid containers and to switch pumps or magnetic valves. In this case it is necessary to protect the relay contacts by appropriate load-dependent measures. The resistance of the conductive fluid is measured when the electrodes are immersed. It is also possible to signal a cable break (requires sensor LKS-ZD). The module can be operated independently or via a Modbus master. Inputs and outputs can be switched and scanned via standard registers. Module address, bit rate and parity are set with two rotary switches on the front or by software. Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

Protocol	Modbus RTU
Address range	00 to 99
Bus interface	RS485 (two-wire bus)
Transmission rate	1200 to $115200 \mathrm{bit} / \mathrm{s}$
Operating voltage	$24 \mathrm{~V} \mathrm{AC/DC} \mathrm{+/-10} \mathrm{\%} \mathrm{(SELV)}$
Current consumption	80 mA (AC) / 43 mA (DC)
Relative duty cycle	100 \%
Input / contacts 1 to 6	connection of the electrodes
Input / contacts C	common reference potential
Internal resistance	20 kOhm
Sinus voltage	3 Veff, 70 Hz at resistance measurement
Measuring accuracy	$+/-10 \%$ with sensor resistance 4 to 40 kOhm +/- 20 \% with sensor resistance 2 to 100 kOhm
Pulse voltage	$+/-16 \mathrm{~V} \text { at }$ wire break monitoring
Zener diodes	6.2 to 10 V can be used as line termination
Lines capacity	40 nF max. equates 400 m at $100 \mathrm{nF} / \mathrm{km}$
Measuring interval	1.5 s
Output / contacts	2 NO contacts (SPST-NO)
Output / switching voltage	250 V AC
Output / continuous current	6 A / output

Wiring/Principle diagram

Connection diagram for $1 \times$ level monitor with 3 electrodes and $4 \times$ leakage sensors					
		A1/ +24 V o A2/ GND 0 BUS B $+0-$ BUS A - o		$\frac{0}{2}$	
P/N	Color	Feature 1			ature 2
11084413	13 gray				

Submersible Electrode TE1 and Leakage sensor LKS1, LKS-ZD is matching accessory for

MR-LD6 Page ENW-E12 119

Submersible Electrode TE1

One-pole submersible electrode made of stainless steel in plastic housing. To monitor filling levels of conductive liquids. To be connected to the level sensor ENW-E12 P/N 110308xx. Contents of the packaging: 1 submersible electrode, 1 sleeve, 1 strain relief

Connecting cable	H 07 RN-F 1.5 mm^{2}
Submersible electrode	High-alloy steel Material number 1.4104 (C12CrMoS12)
Dimensions (diameter x length)	$23 \mathrm{~mm} \times 130 \mathrm{~mm}$

P/N	Color	Feature 1	Feature 2
110324	silver		

Leakage sensor LKS1, LKS-ZD

Leakage sensors are connected to level monitors such as ENW-E12 (P/N 110308xx) and MR-LD6 (11084413) to detect conductive liquids, e.g. in the event of a pipe break. If an electrically conductive liquid (e.g. water) enters the area between the two electrodes, an electrical connection will be created which triggers the alarm on the connected level monitor ENW-E12 or MR-LD6. The leakage sensor LKS-ZD also includes the feature for wire breakage monitoring on the leakage monitoring device MR-LD6. Variants: Color grey

Variants:

- LKS1, without wire break monitoring
- LKS-ZD, with wire break monitoring

Wire breakage monitoring unit no
Connecting cable $2 \times 0.75 \mathrm{~mm}^{2}$
Cable length
Electrode
Dimensions (W x H x D)
Mounting
2 m
Stainless steel $44 \times 16 \times 29 \mathrm{~mm}$
Mounting with 1 screw

P/N	Color	Feature 1	Feature 2
110329	gray/black	LKS1	
11032902	gray/black	LKS-ZD	wire break monitoring

USB/RS485 converter

The USB to RS485 converter allows to connect devices with serial UART interface quickly and easily to USB. The transparent USB plug includes LEDs to view the Tx and Rx traffic on the cable. The other end of the cable consists of bare, tinned wires. Combined with our configuration software, the Modbus devices of the MR series can be connected and configured directly. The converter is USB and USB 2.0 full speed compatible and supports a data transfer rate up to 3 Mbps . The required USB-RS485 drivers are available to download for free from http://www.ftdichip.com.

Cable end 1	USB plug, transparent
Cable end 2	bare wires, tinned
USB performance	2.0, full speed compatible
RS485 acc.	EIA/TIA 485
Cable length	1.8 m
Data transfer rates	$300 \mathrm{bit} / \mathrm{s}$ to $3 \mathrm{mbit} / \mathrm{s}$
Handshake	X-On / X-Off (software)
Visual indication Tx and Rx	LED integrated in USB plug
Weight	80 g
Operating temperature range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Principle diagram

Modbus configuration tool is matching accessory for

MR I/O-Module

Modbus configuration tool

Simple configuration and test program for the METZ CONNECT Modbus RTU I/O-Module.

- Search all connected devices (no special addresses)
- Selected search (specific address range)
- Templates for METZ CONNECT Modbus RTU MR I/O-Module
- Setting the transmission rate and parity
- Readout of input signals and control of Outputs on METZ CONNECT Modbus RTU I/O-Modulen

P/N	Color	Feature 1	Feature 2
www.metz- connect.com			

Matching accessory for NG4

Terminal block	Pag
for I/O Components	71
Jumper plug for I/O components	71

Matching accessory for BMT-DI4

	Page
Power supply NG4 gray	20
Terminal block for I/O Components	71
Jumper plug for I/O components	71

BMT-DI4

 address switches on the front.The BACnet MS/TP module with 4 digital inputs was developed for decentralized switching tasks. It is suitable for detecting potential-free switch states, for example electrical limit switches on vent valves or auxiliary contacts of power contactors. The inputs can be operated by means of potential-free switches or contacts or used as voltage inputs. The inputs can be scanned by means of standard objects via a BACnet client. The module is addressed and the baud rate is set by means of two

Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

Protocol
Address range
Bus interface
Transmission rate
Operating voltage
Current consumption
Relative duty cycle
Inputs
Input / voltage
Input / high signal
Display
Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing terminal blocks

BACnet MS/TP
00 to F9 RS485 (two-wire bus) 9600 to $115200 \mathrm{bit} / \mathrm{s}$ $24 \mathrm{~V} \mathrm{AC/DC}+/-10 \%$ (SELV) $50 \mathrm{~mA}(\mathrm{AC}) / 20 \mathrm{~mA}$ (DC) 100 \% $4 \times$ digital
30 V AC/DC
more than $7 \mathrm{~V} \mathrm{AC/DC}$
Green, red and yellow LED
$35 \times 69.3 \times 60 \mathrm{~mm}$
95 g
$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ IP40 / IP20

Protocol
Address range
Bus interface
Transmission rate
Operating voltage
Current consumption
Relative duty cycle
Inputs
Input / voltage
Input / high signal
Display

Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing /
terminal blocks

BACnet MS/TP
00 to F9
RS485 (two-wire bus)
9600 to $115200 \mathrm{bit} / \mathrm{s}$
24 V AC/DC +/- 10 \% (SELV)
64 mA (AC) / 35 mA (DC)
100 \%
$4 \times$ digital
$30 \mathrm{~V} \mathrm{AC/DC}$
more than 7 V AC/DC
Green, red and yellow LED
$160 \times 40.7 \times 120 \mathrm{~mm}$
350 g
$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ IP65 / IP20
P65 / IP20

BMT-DI4-IP65

The BACnet MS/TP module in IP65 housing with 4 digital inputs was developed for decentralized switching tasks. It is suitable for detecting potential-free switch states, for example electrical limit switches on vent valves or auxiliary contacts of power contactors. The inputs can be operated by means of potentialfree switches or contacts or used as voltage inputs. The inputs can be scanned by means of standard objects via a BACnet client. The module address and the baud rate are set by means of two address switches.

Matching accessory for BMT-DI10

Power supply NG4 gray	20
Terminal block for I/O Components	71
Jumper plug for I/O components	71

Matching accessory for

 BMT-SI4Page
Power supply NG4 gray 20
Terminal block for I/O Components

Jumper plug

for I/O components

BMT-DI10

The BACnet MS/TP module with 10 digital inputs was developed for decentralized switching tasks. It is suitable for detecting potential-free switch states, for example electrical limit switches on vent valves or auxiliary contacts of power contactors. The inputs can be used as contact or voltage inputs. The inputs can be scanned by means of standard objects via a BACnet client. The module is addressed and the baud rate is set by means of two address switches on the front.
Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

Protocol
Address range
Bus interface
Transmission rate
Operating voltage
Current consumption
Relative duty cycle
Inputs
Input / voltage
Input / high signal
Display

Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing /
terminal blocks

Wiring/Principle diagram

P/N	Color	Feature 1	Feature 2
1108811319	gray	$10 x$ IN (U or contact)	

BACnet MS/TP
00 to F9 RS485 (two-wire bus) 9600 to $115200 \mathrm{bit} / \mathrm{s}$ 24 V AC/DC +/- 10 \% (SELV) 200 mA (AC) / 75 mA (DC) 100 \% $10 \times$ digital 0-24 V AC/DC more than $7 \mathrm{~V} \mathrm{AC/DC}$ Green, red and yellow LED
$35 \times 69.3 \times 60 \mathrm{~mm}$ 83 g
$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
IP40 / IP20

BMT-SI4

The BACnet MS/TP module with 4 S0 inputs to DIN EN 62053-31 class A was developed for decentralized switching tasks. It is suitable for counting SO counter pulses. This allows very good integration of the module into an energy controlling system. In case of a power failure, the last counter readings are saved. The inputs can be scanned by means of standard objects via a BACnet client. The module is addressed and the baud rate is set by means of two address switches on the front.
Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

P/N	Color	Feature 1	Feature 2
11088913	gray	$4 \times$ IN (S0 impulse)	

Protocol
Address range
Bus interface
Transmission rate
Operating voltage
Current consumption
Relative duty cycle
Inputs
Input / acc. to standard
Display

Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range Ingress protection for housing
terminal blocks

Wiring/Principle diagram

		SO4-	S04+	

$24 \mathrm{~V} \mathrm{AC} / 170 \mathrm{~mA}$
24 V DC/ 65 mA
GND, Class 2
BACnet MS/TP
00 to F9
RS485 (two-wire bus)
9600 to $115200 \mathrm{bit} / \mathrm{s}$
24 V AC/DC +/- 10 \% (SELV)
$170 \mathrm{~mA}(\mathrm{AC}) / 65 \mathrm{~mA}$ (DC)
100 \%
$4 \times$ SO input, class A
DIN EN 62053-31
Green, red and yellow LED
$35 \times 69.3 \times 60 \mathrm{~mm}$
83 g
$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
IP40 / IP20

Matching accessory for BMT-AI8

	Page
Power supply NG4 gray	20
Terminal block for I/O Components	71
Jumper plug for I/O components	71

Matching accessory for

 BMT-CI4Power supply NG4 gray 20
Terminal block
for I/O Components 71
Jumper plug
for I/O components

BMT-AI8

The BACnet MS/TP module with 8 individually configurable resistance or voltage inputs was developed for decentralized switching tasks. It is suitable for detecting resistances and voltages of, for example, passive and active temperature sensors, electrical vent and mixing valves, valve positions, etc.
71 The inputs can be configured universally by means of standard objects via a BACnet client. The module is addressed and the baud rate is set by means of two address switches on the front.
Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

Protocol	BACnet MS/TP
Address range	00 to F9
Bus interface	RS485 (two-wire bus)
Transmission rate	9600 to $115200 \mathrm{bit} / \mathrm{s}$
Operating voltage	$24 \mathrm{~V} \mathrm{AC/DC} \mathrm{+/-10} \mathrm{\%} \mathrm{(SELV)}$
Current consumption	$65 \mathrm{~mA}(\mathrm{AC}) / 25 \mathrm{~mA}$ (DC)
Relative duty cycle	100%
Inputs	$8 \times$ individually configurable
Input / resistance	40 Ohm to 4 MOhm
Input / voltage	0 to 10 V DC
Input / resolution	$10 \mathrm{mV}(0$ to 100% \%
Input / error	approx. +/-100 mV
Display	Green, red and yellow LED
Dimensions (W x H x D)	$50 \times 69.3 \times 60 \mathrm{~mm}$
Weight	104 g
Operating temperature range	$5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing /	$\mathrm{IP} 40 / \mathrm{IP} 20$
terminal blocks	

Wiring/Principle diagram

$\mathrm{A} 2=\mathrm{C} 2=\mathrm{GND}$

P/N	Color	Feature 1	Feature 2
11088213	gray	$8 \times$ IN (U or R)	

Matching accessory for BMT-DO4

	Page
Power supply NG4 gray	20
Terminal block	
for I/O Components	71
Jumper plug for I/O components	71

Matching accessory for

 BMT-TO4Power supply NG4 gray 20
Terminal block for I/O Components

Jumper plug

for I/O components

BMT-DO4

The BACnet MS/TP module with 4 digital outputs was developed for decentralized switching tasks. It is suitable for switching electrical components, such as motors, contactors, lamps, louvers, etc. In this case it is necessary to protect the relay contacts by appropriate load-dependent measures.
71 The module is provided with a manual control for manually switching the relays. The outputs can be switched by means of standard objects via a BACnet client. The module is addressed and the baud rate is set by means of two address switches on the front.
Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

Protocol	BACnet MS/TP
Address range	00 to F9
Bus interface	RS485 (two-wire bus)
Transmission rate	9600 to $115200 \mathrm{bit} / \mathrm{s}$
Operating voltage	$24 \mathrm{~V} \mathrm{AC/DC} \mathrm{+/-10} \mathrm{\%} \mathrm{(SELV)}$
Current consumption	$200 \mathrm{~mA}(\mathrm{AC}) / 70 \mathrm{~mA}$ (DC)
Relative duty cycle	100%
Output / contacts	4 changeover contacts (4PST)
Output / switching voltage	250 V AC
Output / continuous current	$5 \mathrm{~A} /$ output
Output / switching frequency	360 cycles/h
Display	Green, red and yellow LED
Dimensions (W x H x D)	$35 \times 69.3 \times 60 \mathrm{~mm}$
Weight	95 g
Operating temperature range	
Storage temperature range	$-5{ }^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Ingress protection for housing /	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
IP40 / IP20	
terminal blocks	

Wiring/Principle diagram

42	41	44	32	31	34
A 1 $24 \mathrm{VAC} / \mathrm{DC}$ A 1 A 2 GND A 2 $\mathrm{~B}+$ $\mathrm{BUS} \mathrm{B+}$ $\mathrm{~B}+$ $\mathrm{A}-$ BUS A- $\mathrm{A}-$ 					
11	14	12	21	24	22

P/N	Color	Feature 1	Feature 2
1108861321	gray	4x OUT (relay CO)	

BMT-TO4

The BACnet MS/TP module with 4 digital triac outputs was developed for decentralized switching tasks. It is suitable for switching electrical components, such as relays, contactors, HLK valves, etc. The outputs can be switched by means of standard objects via a BACnet client. In addition, the outputs can be overridden manually by means of switches on the device. The module is addressed and the baud rate is set by means of two address switches on the front.
Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

Protocol
Address range
Bus interface
Transmission rate
Operating voltage
Current consumption
Relative duty cycle
Output / contacts
Output / switching voltage
Output / continuous current
Output / switching current
Output / switch-on current
Display
Dimensions (W $\mathrm{XH} \times \mathrm{D}$)
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing
terminal blocks

Wiring

43	344	33	34
13	314	23	24

P/N	Color	Feature 1	Feature 2
11088013	gray	$4 \times$ OUT (triac)	

Matching accessory for BMT-AOP4

	Page
Power supply NG4 gray	20
Terminal block for I/O Components	71
Jumper plug for I/O components	71

Matching accessory for

 BMT-AO4Power supply NG4 gray 20
Terminal block for I/O Components 71

Jumper plug
for I/O components

BMT-AOP4

The BACnet MS/TP module with 4 analog outputs was developed for decentralized switching tasks. It is suitable as encoder for control variables, for example for electrical vent and mixing valves, valve positions, etc.
The outputs can be output by means of standard objects via a BACnet client. Each output can be set for automatic or manual operation by means of 4 potentiometers at the front.
The module is addressed and the baud rate is set by means of two address switches on the front.
Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

Protocol
Address range
Bus interface
Transmission rate
Operating voltage
Current consumption
Relative duty cycle
Outputs
Output / voltage
Output / current
Output / resolution
Display
Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing /
terminal blocks

Wiring/Principle diagram

C2	24		C2	3
$\begin{array}{\|l\|} \hline \mathrm{A} 1 \\ \hline \mathrm{~A} 2 \\ \hline \mathrm{~B}+ \\ \hline \mathrm{A}- \\ \hline \end{array}$	$\begin{array}{cc\|} \hline 24 \mathrm{VAC} / \mathrm{DC} & \mathrm{~A} 1 \\ \hline \text { GND } & \mathrm{A} 2 \\ \hline \text { BUS B+ } & \mathrm{B}+ \\ \hline \text { BUS A- } & \mathrm{A}- \\ \hline \end{array}$			
1 C 2		2	C2	

$\mathrm{A} 2=\mathrm{C} 2=\mathrm{GND}$

P/N	Color	Feature 1	Feature 2
1108871302	gray	4x OUT (U)	manual/ automatic

BACnet MS/TP
00 to F9
RS485 (two-wire bus)
9600 to $115200 \mathrm{bit} / \mathrm{s}$
$24 \mathrm{~V} \mathrm{AC/DC}+/-10 \%$ (SELV)
$50 \mathrm{~mA}(\mathrm{AC}) / 20 \mathrm{~mA}$ (DC)
100 \%
4 x analog
0 V to 10 V DC
5 mA at 10 V DC
$10 \mathrm{mV} /$ Digit
Green and red LED
$35 \times 69.3 \times 60 \mathrm{~mm}$
72 g
$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
IP40 / IP20

Matching accessory for BMT-Multi-I/O

	Page
Power supply NG4 gray	20
Terminal block for I/O Components	71
Jumper plug for I/O components	71

Matching accessory for BMT-DIO4/2

Power supply NG4 gray 20
Terminal block for I/O Components

Jumper plug

for I/O components

BMT-Multi-I/O

The BACnet module BMT-Multi $1 / 0$ is a compact and rapidly to install solution to connect digital and analog signals from the actor and sensor level directly to a control unit in building automation via BACnet MS/TP protocol. 29 I/Os, some of them are configurable, are available for different tasks. The inputs and outputs can be controlled and scanned by standard objects via a BACnet Client. Module address and bit rate are set with two rotary switches on the front or by software. The relays K1 to K4 are equipped with a manual control and allow manual intervention. In this case it is necessary to protect the relay contacts by appropriate load-dependent measures. Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

Protocol
Address range
Bus interface
Transmission rate
Operating voltage
Current consumption
Relative duty cycle
Inputs / digital

Input / SO

Inputs analog
for resistance or
for voltage
Input / current
Outputs / Relay
Manual control

Outputs / PhotoMOS

BACnet MS/TP
00 to F9 hex RS485 (two-wire bus) 9600 to $115200 \mathrm{bit} / \mathrm{s}$ 24 V AC/DC +/- 10 \% (SELV) $220 \mathrm{~mA}(\mathrm{AC}) / 110 \mathrm{~mA}$ (DC) 100 \%
11 x optocoupler, galvanically isolated
1 x per DIN EN 62053-31, Class A configurable 6×40 Ohm to 4 MOhm 6×0 to 10 V DC
1 x analog 0 to 20 mA DC $4 x$ changeover (4PDT) / 250 V AC / 6 A push buttons, shift from automatic to manual operation by pressing $>1 \mathrm{~s}$ $4 \times 24 \mathrm{~V} \mathrm{AC/DC/} 100 \mathrm{~mA}$, galvanically isolated

Wiring/Principle diagram

BMT-DIO4/2

The BACnet MS/TP module with 4 digital inputs and 2 relay outputs with manual control was developed for decentralized switching tasks. It is suitable for accommodating, for example, light switches and window contacts in a room, switching two light strips or controlling louvers. It can also be used to control 2 motorized fire dampers. In this case it is necessary to protect the relay contacts by appropriate load-dependent measures. The inputs can be used as contact or voltage inputs. The inputs and outputs can be switched and scanned by means of standard objects via a BACnet client. The module address and the baud rate are set by means of two address switches on the front.
Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

Protocol

Address range
Bus interface
Transmission rate
Operating voltage
Current consumption
Relative duty cycle
Inputs
Input / voltage
Input / high signal
Output / contacts
Output / switching voltage
Output / continuous current Output / switch-on current
Display
Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range Ingress protection for housing / IP40 / IP20 terminal blocks

BACnet MS/TP
00 to F9
RS485 (two-wire bus)
9600 to $115200 \mathrm{bit} / \mathrm{s}$
24 V AC/DC +/- 10 \% (SELV)
200 mA (AC) / 75 mA (DC)
100 \%
$4 \times$ digital
0-24 V AC/DC
more than $7 \mathrm{~V} \mathrm{AC/DC}$
2 changeover contacts (DPDT)
250 V AC
16 A / output
80 A (less than 20 ms)
Green, red and yellow LED
$50 \times 69.3 \times 60 \mathrm{~mm}$
126 g
$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Matching accessory for BMT-DIO4/2-IP65 and BMT-DIO4/2-IP 230 V

BMT-DIO4/2-IP65

The BACnet MS/TP module in IP65 housing with 4 digital inputs and 2 relay outputs with manual control was developed for decentralized switching tasks. It is suitable for accommodating, for example, light switches and window contacts in a room, switching two light strips or controlling louvers. It can also be used to control 2 motorized fire dampers. In this case it is necessary to protect the relay contacts by appropriate loaddependent measures. The inputs can be used as contact or voltage inputs. The inputs and outputs can be switched and scanned by means of standard objects via a BACnet client. The module address and the baud rate are set by means of two address switches.

Protocol
Address range
Bus interface
Transmission rate
Operating voltage
Current consumption
Relative duty cycle
Inputs
Input / voltage
Input / high signal
Output / contacts
Output / switching voltage
Output / continuous current (UL)
Output / continuous current (VDE)
Output / switch-on current Display
Dimensions (W x H x D)
Weight
Operating temperature range Storage temperature range Ingress protection for housing / terminal blocks
Wiring/Principle diagram

P/N	Color	Feature 1	Feature 2
1108831326 P	gray	$4 \times$ IN (U or contact)	2x OUT (relay CO)

BMT-DIO4/2-IP 230 V

The BACnet MS/TP module in IP65 housing with 4 digital inputs and 2 relay outputs with manual control was developed for decentralized switching tasks. It is suitable for accommodating, for example, light switches and window contacts in a room, switching two light strips or controlling louvers. It can also be used to control 2 motorized fire dampers. In this case it is necessary to protect the relay contacts by appropriate loaddependent measures. The inputs can be used as contact or voltage inputs. The inputs and outputs can be switched and scanned by means of standard objects via a BACnet client. Module address and bit rate are set with two rotary switches.

Protocol
Address range
Bus interface
Transmission rate
Operating voltage
Current consumption
Relative duty cycle
Inputs
Output / contacts
Output / switching voltage
Output / continuous current (UL)
Output / continuous current (VDE)
Display
Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing
terminal blocks

Wiring/Principle diagram

P/N	Color	Feature 1	Feature 2
1108830526IP	gray		

METZ
Matching accessory for

BMT-TP

The BACnet MS/TP three-point module with 6 digital inputs, 2 two-level relay outputs and 2 digital outputs was developed for decentralized switching tasks. It is suitable for switching, for example, multi-level pumps and fans or louvers. In this case it is necessary to protect the relay contacts by appropriate load-dependent measures. The inputs and outputs can be switched and scanned by means of standard objects via a BACnet client. The input terminals 1 to 6 are wired with the C2 terminals on two poles to potential-free switches or contacts. The module has a manual control for the outputs. The module address and the baud rate are set by means of two address switches on the front.
Suitable for decentralized mounting in serial sub-distributor.

Protocol	BACnet MS/TP
Address range	00 to F9
Bus interface	RS485 (two-wire bus)
Transmission rate	9600 to $115200 \mathrm{bit} / \mathrm{s}$
Operating voltage	$24 \mathrm{~V} \mathrm{AC} / \mathrm{DC}+/-10 \%$ (SELV)
Current consumption	$100 \mathrm{~mA}(\mathrm{AC}) / 40 \mathrm{~mA}(\mathrm{DC})$
Relative duty cycle	100%
Inputs	$6 \times$ digital contacts
Input / switching threshold	4.5 V DC
Outputs (relay)	$2 \times$ two-level
Output / switching voltage	250 V AC
Output / current	$6 \mathrm{~A} / \mathrm{output}$
Outputs (digital)	2 NO (DPST-NO) (photoMOS)
Output / switching voltage	$40 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
Output / current	100 mA
Display	Green, red and yellow LED
Dimensions (W x H x D)	$50 \times 69.3 \times 60 \mathrm{~mm}$
Weight	125 g
Operating temperature range	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing /	$\mathrm{IP} 40 / \mathrm{IP} 20$
terminal blocks	

Wiring/Principle diagram

P/N	Color	Feature 1	Feature 2
11088813	gray	6x IN (contact)	2x OUT (relay CO), 2x OUT (opto NO)

BACnet IP / BACnet MS/TP Router
The BACnet IP / BACnet MS/TP Router provides stand-alone routing between BACnet networks such as BACnet/IP, BACnet Ethernet, and BACnet MS/TP - thereby allowing the system integrator to mix BACnet network technologies within a single BACnet internetwork. One 10/100 Mbps Ethernet port and an $\mathrm{MS} / \mathrm{TP}$ port are used as communication interface to the respective BACnet networks. An integrated web server allows the configuration, status monitoring, and troubleshooting.

Operating voltage	24 V AC/DC +/-10 \%
Power consumption	$4 \mathrm{VA}(\mathrm{AC})$ or 2 W (DC)
Ethernet communications	IEEE 802.3, 10/100 Mbps, 10BASE-T, 100BASE-TX
MS/TP communications	ANSI/ASHRAE 135, ISO16484-5, EIA/TIA 485 9600, 19200, 38400 and 76800 bit/s
Display (Power)	LED, green
Ethernet	$\begin{aligned} & 100 \text { Mbps = LED, green } \\ & 10 \text { Mbps = LED, yellow } \\ & \text { Activity = LED, flashing } \end{aligned}$
MS/TP	Activity = LED, green flashing
Montage	TH35 acc. IEC60715
Weight	220 g
Operating temperature range	$0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Storage temperature range	$-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$
Relative humidity	10 to 95 \%, non condensing
Ingress protection	IP30

Wiring/Dimensional drawing

E(9

P/N	Color	Feature 1	Feature 2
11080001	black	6x IN (contact)	2x OUT (relay CO), 2xOUT (opto NO)

Matching accessory for NG4

Terminal block	Page
for I/O Components	

Matching accessory for LF-DI4

	Page
Power supply NG4 gray	20
Terminal block for I/O Components	71
Jumper plug for I/O components	71

Matching accessory for LF-DI10

Page
Power supply NG4 gray 20
Terminal block
for I/O Components 71
Jumper plug
for I/O components 71

LF-DI4

The LON module with 4 digital inputs was developed for decentralized switching tasks. It is suitable for detecting poten-tial-free switch states, for example electrical limit switches on vent valves or auxiliary contacts of power contactors. The input terminals 1 to 4 are wired with the C2 terminals to potentialfree switches or contacts. The inputs can be scanned individually or simultaneously by SNVT network variables. Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

Protocol	TP/FT-10, free topology
Neuron	FT5000
Transmission rate	$78 \mathrm{KBit} / \mathrm{s}$
Operating voltage	$24 \mathrm{~V} \mathrm{AC/DC} \mathrm{+/-10} \mathrm{\%} \mathrm{(SELV)}$
Current consumption	$63 \mathrm{~mA}(\mathrm{AC}) / 24 \mathrm{~mA}$ (DC)
Relative duty cycle	100%
Recovery time	550 ms
Inputs	4 contact inputs
Input / switching threshold	$4,5 \mathrm{~V}$ DC
Display	Green and yellow LED
Dimensions (W x H x D)	$35 \times 69.3 \times 60 \mathrm{~mm}$
Weight	72 g
Operating temperature range	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing /	$\mathrm{IP} 40 / \mathrm{IP} 20$
terminal blocks	

Wiring/Principle diagram

C2	4		C2	3
$+24 \mathrm{~V} 24 \mathrm{~V} \mathrm{AC/DC+24V}$				
GND	GND NET 1 NET 2			ND
N1				N1
N2				N2
1 C2		2	C2	

P/N	Color	Feature 1	Feature 2
1108501319	gray	$4 \times$ IN (U or contact)	

Wiring/Principle diagram

P/N	Color	Feature 1	Feature 2
1108511319	gray	$10 x \mathrm{IN}$ (U or contact)	

Matching accessory for LF-DI10-IP65

	Page
Power supply NG4 gray	20

Matching accessory for LF-DI230

Power supply NG4 gray 20

Terminal block

for I/O Components

Jumper plug for I/O components

LF-DI10-IP65

The LON module in an IP65 housing with 10 digital inputs was developed for decentralized switching tasks. It is suitable for detecting potential-free switch states, for example electrical limit switches on vent valves or auxiliary contacts of power contactors. The inputs can be used as contact or voltage inputs and scanned individually or simultaneously by SNVT network variables. Suitable for decentralized mounting in serial sub-distributor.

Protocol	TP/FT-10, free topology
Neuron	FT5000
Transmission rate	$78 \mathrm{KBit} / \mathrm{s}$
Operating voltage	$24 \mathrm{~V} \mathrm{AC/DC} \mathrm{+/-10} \mathrm{\%} \mathrm{(SELV)}$
Current consumption	$63 \mathrm{~mA}(\mathrm{AC}) / 21 \mathrm{~mA}(\mathrm{DC})$
Relative duty cycle	100%
Recovery time	550 ms
Inputs	$10 \times$ contact or voltage
Input / voltage	$24 \mathrm{~V} \mathrm{AC/DC}$
Input / high signal	more than $8 \mathrm{~V} \mathrm{AC/DC}$
Display	
	$160 \times 40.7 \times 120 \mathrm{~mm}$
Dimensions (W x H x D)	300 g
Weight	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Operating temperature range	
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing /	$\mathrm{IP} 65 / \mathrm{IP} 20$
terminal blocks	

Wiring/Principle diagram

P/N	Color	Feature 1	Feature 2
1108511319 P	gray	$10 \times$ IN (U or contact)	

connect $\boldsymbol{B T}_{\boldsymbol{R}_{\text {netcom }}}$

Matching accessory for LF-SI4

	Page
Power supply NG4 gray	20
Terminal block for I/O Components	71
Jumper plug for I/O components	71

Terminal block

Jumper plug for I/O components 71

LF-SI4

The LON module with 4 SO inputs to DIN EN 62053-31 class A was developed for decentralized switching tasks. It is suitable for counting SO counter pulses. The software contains the LONMARK profile 2201-10 utility meter. This allows very good integration of the module into a LON-based energy controlling system. For each channel, the module saves up to 500 data records consisting of counter pulses and time stamps by means of a real-time clock (RTC). This makes it possible to use the LF-SI4 also as data logger. In case of a power failure, the data records remain saved. SNVT network variables allow scanning the inputs individually or simultaneously.
Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

Protocol	TP/FT-10, free topology
Neuron	FT5000
Transmission rate	$78 \mathrm{KBit} / \mathrm{s}$
Operating voltage	$24 \mathrm{~V} \mathrm{AC/DC} \mathrm{+/-10} \mathrm{\%} \mathrm{(SELV)}$
Current consumption	210 mA (AC) / 82 mA (DC)
Relative duty cycle	100 \%
Recovery time	550 ms
Inputs	$4 \times$ SO input, class A
Input / acc. to standard	DIN EN 62053-31
Display	Green and yellow LED
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)	$35 \times 69.3 \times 60 \mathrm{~mm}$
Weight	83 g
Operating temperature range	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing / terminal blocks	IP40 / IP20

Wiring/Principle diagram

S04-S04+	S03-503+
$24 \mathrm{~V} \mathrm{AC/DC} \mathrm{+24V}$	
GND NET 1 NET 2	GND
	N1
	N2
S01-S01+	S02-502+

P/N	Color	Feature 1	Feature 2
11085813	gray	$4 \times$ IN (S0 impulse)	

Matching accessory for

 LF-AI8| Power supply NG4 gray | Page
 20 |
| :--- | ---: |
| Terminal block
 for I/O Components 71
 Jumper plug
 for I/O components 71
 Matching accessory for
 LF-CI4 | |

Power supply NG4 gray 20
Terminal block for I/O Components

Jumper plug

for I/O components

Protocol	TP/FT-10, free topology
Neuron	FT5000
Transmission rate	78 KBit/s
Operating voltage	$24 \mathrm{~V} \mathrm{AC/DC} \mathrm{+/-10} \mathrm{\%} \mathrm{(SELV)}$
Current consumption	65 mA (AC) / 25 mA (DC)
Relative duty cycle	100 \%
Recovery time	550 ms
Inputs	8 x individually configurable
Input / resistance	40 Ohm to 4 MOhm
Input / voltage	0 to 10 V DC
Input / resolution	10 mV (0 to 100%)
Input / error	approx. +/-10 mV
Display	Green and yellow LED
Dimensions (W x H x D	$50 \times 69.3 \times 60 \mathrm{~mm}$
Weight	126 g
Operating temperature range	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$
Ingress protection for housing / terminal blocks	IP40 / IP20

P/N	Color	Feature 1	Feature 2
11085313	gray	$8 \times$ IN $($ U or R)	

connect $\boldsymbol{B T}_{\boldsymbol{R}_{\text {netcom }}}$

LF-CI4

The LON module with analog inputs was developed for decentralized switching tasks. It is suitable for detecting 4 currents and 4 voltages of, for example, active temperature sensors, electrical vent and mixing valves, valve positions, etc. The inputs can be scanned by SNVT network variables. Suitable for decentralized mounting on TH35 rails according to IEC 60715 in electrical distribution cabinets.

Protocol

Neuron
Transmission rate
Operating voltage
Current consumption
Relative duty cycle
Recovery time
Inputs
Input / voltage
Input / resolution
Input / resistance
Input / current
Input / resolution
Input / error
Display
Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing / IP40 / IP20
terminal blocks

Wiring/Principle diagram

14	V4	C2	13	V3	C2
A1	1	$\left\lvert\, \begin{gathered} 24 \mathrm{~V} \text { AC/DC } \\ \text { GND } \\ \text { NET1 } \\ \text { NET2 } \end{gathered}\right.$			A1
A2					A2
N1					N1
N2					N2
C2	V1	11	C2	V2	12

P/N	Color	Feature 1	Feature 2
1108601332	gray	4x IN (U or I) activ	

Matching accessory for LF-DO4

	Page
Power supply NG4 gray	20
Terminal block for I/O Components	71
Jumper plug for I/O components	71
Matching accessory for LF-DO4-IP65	
	Page
Power supply NG4 gray	20

LF-DO4

The LON module with 4 digital outputs was developed for decentralized switching tasks. It is suitable for switching electrical components, such as motors, contactors, lamps, louvers, etc. In this case it is necessary to protect the relay contacts by appropriate load-dependent measures. The outputs can be actuated by SNVT network variables. The module has a manual control activated only in configured mode. In addition, an adjustable wipe function is integrated.
Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

Protocol	TP/FT-10, free topology
Neuron	FT5000
Transmission rate	$78 \mathrm{KBit} / \mathrm{s}$
Operating voltage	$24 \mathrm{~V} \mathrm{AC/DC} \mathrm{+/-10} \mathrm{\%} \mathrm{(SELV)}$
Current consumption	$205 \mathrm{~mA}(\mathrm{AC}) / 67 \mathrm{~mA}$ (DC)
Relative duty cycle	100%
Recovery time	550 ms
Outputs	4 changeover contacts (4PDT)
Output / switching voltage	max. 250 V AC
Output / continuous current	$5 \mathrm{~A} /$ output
Output / total current	max. $12 \mathrm{~A} / \mathrm{all}$ outputs
Output / switching frequency	$360 \mathrm{cycles} / \mathrm{h}$
Display	Green and yellow LED
Dimensions (W x H x D)	$35 \times 69.3 \times 60 \mathrm{~mm}$
Weight	95 g
Operating temperature range	$-5{ }^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing / IP40 / IP20	
terminal blocks	

Wiring/Principle diagram

1141212124

LF-DO4-IP65

The LON module in an IP65 housing with 4 digital outputs was developed for decentralized switching tasks. It is suitable for switching electrical components, such as motors, contactors, lamps, louvers, etc. In this case it is necessary to protect the relay contacts by appropriate load-dependent measures. The outputs can be actuated by SNVT network variables. The module has a manual control activated only in configured mode. In addition, an adjustable wipe function is integrated.

Protocol
Neuron
Transmission rate
Operating voltage
Current consumption
Relative duty cycle
Recovery time
Outputs
Output / switching voltage Output / switch-on, switch-off current
Output / continuous current
Output / total current
Output / switching frequency
Display
Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range Ingress protection for housing / terminal blocks

Wiring/Principle diagram

Bus
NET B
NET A
NET B
NET A

Versorgung/Supply
A2 GND

A1	$24 \mathrm{~V} \mathrm{AC/DC}$
y	

A2 GND

P/N	Color	Feature 1	Feature 2
1108521321	gray	4x OUT (relay CO)	manual/ automatic

P/N	Color	Feature 1	Feature 2
1108521321IP	gray	4x OUT (relay CO)	manual/ automatic

Matching accessory for LF-TO4	
Power supply NG4 gray	20
Terminal block for I/O Components	71
Jumper plug for I/O components	71

Matching accessory for LF-AOP4

	Page
Power supply NG4 gray	20
Terminal block for I/O Components	71
Jumper plug for I/O components	71

Matching accessory for LF-AO4-IP65

LF-AOP4

The LON module with 4 analog outputs was developed for decentralized switching tasks. It is suitable as encoder for control variables, for example for electrical vent and mixing valves, valve positions, etc.
The analog outputs can be activated proportionally by SNVT network variables, or previously defined voltage values can be adjusted. Each output can be set for automatic or manual operation by means of 4 potentiometers at the front. Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

Protocol	TP/FT-10, free topology
Neuron	FT5000
Transmission rate	$78 \mathrm{KBit} / \mathrm{s}$
Operating voltage	$24 \mathrm{~V} \mathrm{AC/DC} \mathrm{+/-10} \mathrm{\%} \mathrm{(SELV)}$
Current consumption	$100 \mathrm{~mA}(\mathrm{AC}) / 40 \mathrm{~mA}(\mathrm{DC})$
Relative duty cycle	100%
Recovery time	550 ms
Outputs	$4 \times$ analog
Output / voltage	0 V to 10 V DC
Output / current	5 mA to 10 V DC
Output / resolution	$0.625 \mathrm{mV} /$ digit
Output / error	100 mV
Display	Green and yellow LED
Dimensions (W x H x D)	$35 \times 69.3 \times 60 \mathrm{~mm}$
Weight	84 g
Operating temperature range	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing /	$\mathrm{IP} 40 / \mathrm{IP20}$
terminal blocks	

Wiring/Principle diagram

P/N	Color	Feature 1	Feature 2
11085413	gray	4x OUT (U)	manual/ automatic

P/N	Color	Feature 1	Feature 2
11085413 IP	gray	$4 \times$ OUT (U)	

Matching accessory for	
LF-AM2/4	Page
Power supply NG4 gray	20
Terminal block for I/O Components	71
Jumper plug for I/O components	71

Matching accessory for

 LF-TI-IP65Power supply NG4 gray 20
Terminal block for I/O Components

Jumper plug

for I/O components

LF-AM2/4

The LON I/O module with 2 analog inputs, 2 analog outputs and 2 digital outputs. It is suitable for controlling, for example, motorized vent valves and switching on alarm at the set threshold value. The inputs and outputs are scanned and activated by SNVT network variables. The analog inputs can be scanned simultaneously. The analog outputs can be activated proportionally, or previously defined voltage values can be adjusted. Both digital outputs can be activated individually or as a function of an adjustable threshold value.
Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

Protocol	TP/FT-10, free topology
Neuron	FT5000
Transmission rate	78 KBit/s
Operating voltage	$24 \mathrm{~V} \mathrm{AC/DC} \mathrm{+/-10} \mathrm{\%} \mathrm{(SELV)}$
Current consumption	95 mA (AC) / 35 mA (DC)
Relative duty cycle	100 \%
Inputs	$2 \times$ analog
Input / voltage	0 V to 10 V DC
Input / resolution	10 mV (0 to 100%)
Outputs	2 x analog
Output / voltage	0 V to 10 V DC
Output / current	5 mA at 10 V DC
Output / resolution	10 mV (0 to 100%)
Output	$2 \times$ digital
Output / contacts	2 NO (DPST-NO)
	photoMOS relay
Switching voltage	max. $40 \mathrm{~V} \mathrm{AC/DC}$
Continuous current	max. 100 mA
Operation and bus display	Green and yellow LED
Dimensions (W x H x D)	$35 \times 69.3 \times 60 \mathrm{~mm}$
Weight	82 g
Operating temperature range	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$
Ingress protection for housing / terminal blocks	IP40 / IP20

Wiring/Principle diagram

23	24	12	12-	02	O2
+24V 24 V AC/DC					
GND		$\begin{gathered} 24 \mathrm{~V} \mathrm{AC/DC} \\ \text { GND } \\ \text { NET } 1 \\ \text { NET } 2 \end{gathered}$			GND
N1					N1
N2					N2
13	14	11	11-		01

P/N	Color	Feature 1	Feature 2
11085713	gray	$2 \times \operatorname{IN}(\mathrm{U})$	2x OUT (U), 2x OUT (opto NO)

Matching accessory for LF-DM4/4	
	Page
Power supply NG4 gray	20
Terminal block for I/O Components Jumper plug for I/O components	71

Matching accessory for LF-TP

Page
Power supply NG4 gray 20
Terminal block
for I/O Components

Jumper plug

for I/O components 71

LF-DM4/4

The LON I/O module with 4 digital inputs, 2 relay outputs and 2 digital outputs was developed for decentralized switching tasks. It is suitable for querying, for example, switching states and, as a result, switching motors or other actuators. In this case it is necessary to protect the relay contacts by appropriate load-dependent measures. The inputs and outputs are scanned and activated by SNVT network variables. The input terminals 1 to 4 are wired with the C2 terminals on two poles to potentialfree switches or contacts. In addition, a wipe function is integrated.
Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

Protocol	TP/FT-10, free topology
Neuron	FT5000
Transmission rate	$78 \mathrm{KBit} / \mathrm{s}$
Operating voltage	$24 \mathrm{~V} \mathrm{AC} / \mathrm{DC}+/-10 \%$ (SELV)
Current consumption	$200 \mathrm{~mA}(\mathrm{AC}) / 65 \mathrm{~mA}$ (DC)
Relative duty cycle	100%
Recovery time	550 ms
Inputs	$4 \times$ digital contacts
Input / switching threshold	$4,5 \mathrm{~V} \mathrm{DC}$
Outputs (relay)	2 NO (DPST-NO)
Output / switching voltage	250 V AC
Output / current	$6 \mathrm{~A} / \mathrm{output}$
Outputs (digital)	2 NO (DPST-NO) (photoMOS)
Output / switching voltage	$40 \mathrm{~V} \mathrm{AC/DC}$
Output / current	100 mA
Operation and bus display	Green and yellow LED
Dimensions (W x H x D)	$35 \times 70 \times 65 \mathrm{~mm}$
Weight	90 g
Operating temperature range	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing /	$\mathrm{IP} 40 / \mathrm{IP} 20$
terminal blocks	

Wiring/Principle diagram

P/N	Color	Feature 1	Feature 2
1108561326	gray	$4 \times$ IN (contact)	$2 \times$ OUT (relay NO),
2xOUT (opto NO)			

LF-TP

The LON three-point module with 6 digital inputs, 2 two-level relay outputs and 2 digital outputs was developed for decentralized switching tasks. It is suitable for switching, for example, multi-level pumps, fans, burners or similar. In this case it is necessary to protect the relay contacts by appropriate loaddependent measures. The inputs and outputs are scanned and activated by SNVT network variables. The input terminals 1 to 6 are wired with the C2 terminals on two poles to potential-free switches or contacts. The module has a manual control for the outputs, which is activated only in configured mode.
Suitable for decentralized mounting in serial sub-distributor.

Protocol
Neuron
Transmission rate
Operating voltage
Current consumption
Relative duty cycle
Recovery time
Inputs
Input / switching threshold
Outputs (relay)
Output / switching voltage
Output / current
Outputs (digital)
Output / switching voltage Output / current
Operation and bus display
Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing /
terminal blocks

Wiring/Principle diagram

4	5	6	C2	S2	S2	44	34	31
1	2	3	C2	S1	S1	14	24	11

P/N	Color	Feature 1	Feature 2
11085913	gray	$6 x$ IN (contact)	2x OUT (relay CO), 2x OUT (opto NO)

Matching accessory for LF-DIO4/2

	Page
Power supply NG4 gray	20
Terminal block	
for I/O Components	71
Jumper plug for I/O components	71

Matching accessory for LF-DIO4/2-IP65

LF-DIO4/2

The LON module with 4 digital inputs and 2 relay outputs was developed for decentralized switching tasks. It is suitable for accommodating, for example, light switches and window contacts in a room, switching two light strips or controlling louvers. It can also be used to control 2 motorized fire dampers. In this case it is necessary to protect the relay contacts by appropriate load-dependent measures. The inputs can be used either as contact or voltage inputs. SNVT network variables switch and scan the inputs and outputs. The outputs have a manual control activated only in configured mode. In addition, an adjustable wipe function is integrated. Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

Protocol
Neuron
Transmission rate
Operating voltage
Current consumption
Relative duty cycle
Recovery time
Inputs
Input / voltage
Input / high signal
Outputs
Output / switching voltage
Output / current
Output / total current
Operation and bus display
Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing /
terminal blocks
Wiring/Principle diagram

P/N	Color	Feature 1	Feature 2
1108551326	gray	$4 \times$ IN (U or contact)	2x OUT (relay CO)

TP/FT-10, free topology FT5000
$78 \mathrm{KBit} / \mathrm{s}$
$24 \mathrm{~V} \mathrm{AC/DC} \mathrm{+/-10} \mathrm{\%} \mathrm{(SELV)}$ $220 \mathrm{~mA}(\mathrm{AC}) / 90 \mathrm{~mA}$ (DC)
100 \%
550 ms
$4 \times$ digital
24 V AC/DC
more than 8 V AC/DC
2 changeover contacts (DPDT)
250 V AC
$16 \mathrm{~A} /$ output
25 A across all outputs
Green and yellow LED
$50 \times 69.3 \times 60 \mathrm{~mm}$
126 g
$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
IP40 / IP20
?

Matching accessory for LF-FAM

Terminal block

 for I/O Components
LF-FAM

Switch-on module for bus connection, supply voltage and adjustable bus termination. The switch-on module was developed as wiring help for supplying the supply voltage and a two-wire bus to the LON bus modules. The supply voltage and the two-wire bus are led to the upper part of the housing over a sturdy terminal block with a cross section of max. $2.5 \mathrm{~mm}^{2}$ and connected to the modules by means of the jumper. Using a suitable interface cable, the two-wire bus can be connected to a PC over the two RJ45 jacks. A bus terminating resistor of 52.3 Ohm (R/2) for free network topology and 105 Ohm (R) for line topology can be set by means of the jumper under the removable cover.
Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

Operating voltage	$24 \mathrm{~V} \mathrm{AC/DC}+/-10 \%$ (SELV)
Current consumption	less than 5 mA relative 100% Switch-on duration Green LED
Display	
Dimensions (W x H x D)	$35 \times 69.3 \times 60 \mathrm{~mm}$
Weight	75 g
Operating temperature range	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing /	$\mathrm{IP} 40 / \mathrm{IP20}$
terminal blocks	

Wiring/Principle diagram

A1	A2	N1	N2	
A 1 $24 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$ A 1 A 2 GND A 2 N 1 NET 1 N 1 N 2 NET 2 N 2				
A1	A2	N1	N2	

P/N	Color	Feature 1	Feature 2
11087913	gray		

Matching accessory for NG4

Terminal block	Page
for I/O Components	

Echelon IzoT ${ }^{\circledR}$ CT 4.1 Standard and Echelon IzoT ${ }^{\circledR}$ CT 4.1 Professional is matching accessory for

Page
LF-I/O-Module from 52
Echelon U10 USB Network Interface 65

Echelon IzoT ${ }^{\circledR}$ CT 4.1 Standard
IzoT CT (Commissioning Tool) Standard
Open LNS Server
Visio 2016 Standard
DVD
max. number of networks limited to 5
(Echelon Model-No.: 38100-401)

Echelon IzoT ${ }^{\circledR}$ CT 4.1 Professional

IzoT CT (Commissioning Tool) Professional
OpenLNS Server
Visio 2016 Professional
DVD
(Echelon Model-No.: 38000-401)

P/N	Color	Feature 1	Feature 2
110208			

P/N	Color	Feature 1	Feature 2
110209			

Other Echelon products on request.

Echelon U10 USB Network Interface

The USB network interface is a low-cost, high-performance LONWORKS interface for USB-capable personal computers and controllers. The U10 USB network interface is connected directly to a TP/FT10 free-topology twisted-pair (ANSI/ CEA-709.3) LONWORKS channel by means of a high-quality removable connector. It is fully compatible with link powered channels.

- High network throughput and performance
- Sturdy design, removable plugs
- Plug-and-play driver for Windows 2000, XP and Server 2003
- Compatible with LNS® and OpenLDV ${ }^{T \mathrm{M}}$ based applications
- Compatible with LonScanner ${ }^{\text {TM }}$ protocol analyzer
- CE marking, UL and cUL listed, TÜV certification

Dimensions (W x H x D)	$22.4 \times 18.2 \times 113.2 \mathrm{~mm}$
Operating temperature range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Echelon Model-No.:	75010 R

P/N	Color	Feature 1	Feature 2
110214		TP/FT-10 Channel	

Matching accessory for FDE 4

	Page
Power supply NG4 gray	20
Terminal block for I/O Components	71
Jumper plug for I/O components	71

FDE 4
CAN module with 4 digital inputs, which can be operated as contact or voltage inputs. It is suitable for detecting switch states, for example, of electrical limit switches on vent valves or auxiliary contacts of power contactors. The fieldbus module is an input module for universal use. It is controlled by means of the CAN bus. The module is addressed by means of an adjustable address, and the input states are transmitted in data bytes. If there is one (or more) relay output module(s) with the same address in the system, the respective outputs are switched.

Protocol	CAN
Addressing range	00 to 99
Bus interface ©CiA standard	2.0 B passive (two-wire bus)
Transmission rate	20 to $500 \mathrm{kBit} / \mathrm{s}$
Operating voltage	$24 \mathrm{~V} \mathrm{AC/DC} \mathrm{+/-10} \mathrm{\%} \mathrm{(SELV)}$
Current consumption	$63 \mathrm{~mA}(\mathrm{AC}) / 21 \mathrm{~mA}$ (DC)
Relative duty cycle	100%
Recovery time	550 ms
Inputs	$4 \times$ digital
Input / high signal	less than 7 V DC
Display	Green, red and yellow LED
Dimensions (W x H x D)	$35 \times 69.3 \times 60 \mathrm{~mm}$
Weight	83 g
Operating temperature range Storage temperature range	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Ingress protection for housing /	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
IP40 / IP20	
terminal block	

Wiring/Principle diagram

P/N	Color	Feature 1	Feature 2
1105751319	gray		

Matching accessory for FAE 4

	Page
Power supply NG4 gray	20
Terminal block	
for I/O Components	71
Jumper plug for I/O components	71

FAE 4
CAN module with 4 temperature and 4 voltage inputs. It is suitable for recording temperatures with Ni1000 or PT1000 sensors and voltages of, for example, electrical vent and mixing valves, valve positions, etc.
The fieldbus module is an input module for universal use. It is controlled by means of the CAN bus. The module is addressed by means of an adjustable address, and the input states are transmitted in data bytes. If there is one (or more) analog output module(s) with the same address in the system, the voltage measured there is issued at the respective output.
Each input can be adjusted either from 0 to 10 V DC, to Ni1000 $\left(-50^{\circ} \mathrm{C}\right.$ to $\left.+150^{\circ} \mathrm{C}\right)$, PT1000 $\left(-50^{\circ} \mathrm{C}\right.$ to $\left.+150^{\circ} \mathrm{C}\right)$ or PT1000 $\left(0^{\circ} \mathrm{C}\right.$ to $+400^{\circ} \mathrm{C}$) by means of a DIP switch.

Protocol	CAN
Addressing range	00 to 99
Bus interface ©CiA standard	2.0 B passive (two-wire bus)
Transmission rate	20 to $500 \mathrm{kBit} / \mathrm{s}$
Operating voltage	$24 \mathrm{~V} \mathrm{AC/DC}+/-10 \%$ (SELV)
Current consumption	$67 \mathrm{~mA}(\mathrm{AC}) / 24 \mathrm{~mA}$ (DC)
Relative duty cycle	100%
Recovery time	550 ms
Inputs	$4 \times$ analog
Input / voltage	0 to 10 V DC
Input / resolution	$10 \mathrm{mV} /(0 \%$ to 100%)
Input / error	approx. $+/-20 \mathrm{mV}$
Input / temperature range	$\mathrm{Ni} 1000,-50$ to $+150{ }^{\circ} \mathrm{C}$
Input / temperature range	$\mathrm{PT} 1000,-50$ to $+150{ }^{\circ} \mathrm{C}$
Input / temperature range	$\mathrm{PT} 1000,0$ to $+400^{\circ} \mathrm{C}$
Display	Green and red LED
Dimensions (W x H x D)	$35 \times 69.3 \times 60 \mathrm{~mm}$
Weight	84 g
Operating temperature range	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing /	$\mathrm{IP} 40 / \mathrm{IP} 20$
terminal block	

Wiring/Principle diagram

	$4{ }^{4} 4$		U3	$3-$
1- U	U1 11	2-	02	T2

P/N	Color	Feature 1	Feature 2
1105741306	gray		

Matching accessory for	
FRAS 4/21	Page
Power supply NG4 gray	20
Terminal block for I/O Components Jumper plug for I/O components	71
	71

Matching accessory for FRAS 4/21

FRAS 4/21
CAN module with 4 digital outputs. It is suitable for switching electrical components, for example motors, contactors, lamps, louvers, etc. With strong inductive loads, we recommend protecting the relay contacts additionally with an RC element. The fieldbus module is an input module for universal use. It is controlled by means of the CAN bus. The module is addressed by means of an adjustable address. Data bytes transmit whether data are queried or commands are executed. If there is a digital input module with the same address in the system, the module can be operated by remote control.

Protocol	CAN
Addressing range	00 to 99
Bus interface ©CiA standard	2.0 B passive (two-wire bus)
Transmission rate	20 to $500 \mathrm{kBit} / \mathrm{s}$
Operating voltage	$24 \mathrm{~V} \mathrm{AC/DC} \mathrm{+/-10} \mathrm{\%} \mathrm{(SELV)}$
Current consumption	$205 \mathrm{~mA}(\mathrm{AC}) / 67 \mathrm{~mA}(\mathrm{DC})$
Relative duty cycle	100%
Recovery time	550 ms
Output / contacts	$4 \times$ changeover contacts
	$(4 \mathrm{DPST})$
Output / switching voltage	250 V AC
Output / continuous current	$5 \mathrm{~A} / \mathrm{output}$
Output / total current	$\mathrm{max.12} \mathrm{A/all} \mathrm{outputs}$
Display	Green, red and yellow LED
Dimensions (W x H x D)	$35 \times 69.3 \times 60 \mathrm{~mm}$
Weight	104 g
Operating temperature range	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing /	$\mathrm{IP} 40 / \mathrm{IP} 20$
terminal block	

Wiring/Principle diagram

42		41	44	32	31	1	
11	114		12	21	24		

P/N	Color	Feature 1	Feature 2
1105701321	gray		

Matching accessory for FAA 4

	Page
Power supply NG4 gray	20
Terminal block for I/O Components	71
Jumper plug for I/O components	71

FAA 4
CAN module with 4 analog outputs. It is suitable as encoder for control variables, for example for electrical vent and mixing valves, valve positions, etc.
The fieldbus module is an output module for universal use. It is controlled by means of the CAN bus. The module is addressed by means of an adjustable address, and the output states are transmitted in data bytes. If there is an analog input module with the same address in the system, the voltage measured there is issued at the respective output.

Protocol	CAN
Addressing range	00 to 99
Bus interface ©CiA standard	2.0 B passive (two-wire bus)
Transmission rate	20 to $500 \mathrm{kBit} / \mathrm{s}$
Operating voltage	$24 \mathrm{~V} \mathrm{AC/DC} \mathrm{+/-10} \mathrm{\%} \mathrm{(SELV)}$
Current consumption	$90 \mathrm{~mA}(\mathrm{AC}) / 32 \mathrm{~mA}$ (DC)
Relative duty cycle	100%
Recovery time	550 ms
Outputs	$4 \times$ analog
Output / voltage	0 to 10 V DC
Output / current	5 mA at 10 V DC
Output / resolution	$10 \mathrm{mV} /$ digit
Output / switching voltage	$+/-1 \%$
Display	Green and red LED
Dimensions (W x H x D)	$35 \times 69.3 \times 60 \mathrm{~mm}$
Weight	84 g
Operating temperature range	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing /	$\mathrm{IP} 40 / \mathrm{IP} 20$
terminal block	

Wiring/Principle diagram

4.			$3-$	
1+ 1 -		$2+$	2 -	

P/N	Color	Feature 1	Feature 2
1105731302	gray		

Matching accessory for NG4

	Page
Terminal block for I/O Components	71
Jumper plug for I/O components	71

NG4
The NG4 HS power supply supplies a regulated direct voltage of 24 V DC / 16 W for supplying power to the respective devices of the product family of I/O components. The secondary voltage can only be tapped at the right side of the device front at a pluggable terminal block and at the screw-type terminal blocks. The bus communication can be tapped on both sides of the device front. A parallel operation of various power supply units is not allowed. Suitable for decentralized mounting on DIN TH35 rail according to IEC 60715 in electrical distribution cabinets.

Field of application	LON-Bus (LF-xxx)
	BACnet (BMT-xxx),
	Modbus (MR-xxx)
Input voltage range	110-240 V AC, $50 / 60 \mathrm{~Hz}$
Internal fuse, soldered fuse	T 1,0 A/250 V
Output / power	16 W
Output / voltage	+24 V DC (SELV)
Output / current	700 mA
Load and control accuracy	+/-3 \%
Mains failure backup	smaller than 40 ms
Display	green LED
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)	$50 \times 69.3 \times 60 \mathrm{~mm}$
Weight	108 g
Operating temperature range	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing / terminal block	IP40 / IP20
Terminal blocks	
Wire cross section solid wire	max. 4 mm ${ }^{2}$
Wire cross section stranded wire	max. $2.5 \mathrm{~mm}^{2}$
Wire diameter	0.3 mm up to max. 2.7 mm
Wiring/Principle diagram	

P/N	Color	Feature 1	Feature 2
110561	gray		with jumper plug

Jumper plug for I/O	
components is matching	
accessory for	
	Page
Data logger	12
Ethernet I/Os	24
Modbus I/Os	26
BACnet I/Os	42
LON I/Os	52
CAN-Bus I/Os	66

Terminal block for I/O components is matching accessory for

Data logger	12
Ethernet I/Os	24
Modbus I/Os	26
BACnet I/Os	42
LON I/Os	52
CAN-Bus I/Os	66

Jumper plug for I/O components

Jumper plug for quickly connecting l/O components without tools. The jumper plug connects bus and power supply of I/O modules mounted next to each other.

- pluggable, 4-pole
- Grid dimension 3.5 mm
- Black

Rated voltage UL
Rated voltage SEV
Rated current
Pin diameter
Pin material
Upper temperature limit Lower temperature limit

150 V
125 V AC/DC eff max. 4 A
0.9 mm

CuZn
$125^{\circ} \mathrm{C}$
$-30^{\circ} \mathrm{C}$

P/N	Color	Feature 1	Feature 2
31135104	black		

P/N	Color	Feature 1	Feature 2
110369	black		

We realize ideas

Switches

METZ CONNECT - your partner for building automation

EAs one of the leading suppliers of I/O bus modules, we and our partners have set up a cooperation structure addressing the challenges implied in modern building automation and that - thanks to its innovations - counts among the best on the market - to the advantage of our investors, planners, fitters and operators.

Through the products from our partners Echelon and Moxa, METZ CONNECT offers system components such as routers and switches that you will need to set up and to operate networks. This includes, as a matter of fact, also competent advice on how to plan, install and operate networks.

Contents \mid Switches

Switches

1 Industry Switches | Ethernet

Other Moxa switches on request.

P/N	Color	Feature 1	Feature 2
110195	gray	5 port RJ45	

P/N	Color	Feature 1	Feature 2
110196	gray	8 port RJ45	
11019601	gray	7 port RJ45	1 Port SC MM

We realize ideas

Control cabinet components

Interface modules

In the control and automation technology, METZ CONNECT interface modules form the separation between the logic level and the load level. Interface technology means separating, forming, processing, converting and adapting signals. METZ CONNECT offers solutions for almost any application in various housing designs for the DIN rail mounting.

In addition to universally applicable coupling modules, we also offer sensor and actuator interface modules as optocouplers, potential distributors, diode modules, signalling modules, threshold switches, analogue value transmitters, analogue-digital converters and as potential isolators. The product range is supplemented by powerful and compact, pluggable 14-pole industrial relays.

Contents | Control cabinet components | Interface modules

Control cabinet components | Interface modules
1 Interface modules |
Electromechanical coupling modules 78
2 Interface modules | Relay modules 87
3 Interface modules | Coupling modules semi-conductor. 89
4 Interface modules | Analog data encoder 90
5 Interface modules | Potential distributor 92
6 Interface modules | Threshold control. 93
7 Interface modules | Motor control 97
8 Interface modules |
Potential separator Signal separator 98
9 Interface modules | AD/DA converter. 99
10 Interface modules |
Pulse shaper Signal extender 100
11 Interface modules | Annunciator modules 101
12 Interface modules | Diode modules 103
13 Interface modules | Industrial relays. 106
14 Interface modules | Accessories 108

Relays for measuring and monitoring purposes
 Monitoring relays are used to protect people and machines and to control
 Switching, controlling, visualizing Electronic time relays

 electrical cycles in line with the electrical or physicals parameters and, according to the low voltage directives certain individual applications have to be equipped with these relays.The range of products from METZ CONNECT offers a broad spectrum of measuring and monitoring relays suited for a multitude of applications: current monitors for universal applications, phase monitors as protection against destruction/deterioration of system parts, phase sequence relays to monitor the rotating field, asymmetric relays for a safe detection of phase failures, multifunctional 3-phase monitors, level relays for fill level monitoring

A timer relay is a special version of a relay which can be used, for example, in the field of control and automation technology to achieve switch-on or switch-off delays. The product range includes timer relays with multiple functions and adjustable time ranges as well as relays with special functions such as on-delay, off-delay, on-wiping, flashing, clocking and star-delta relays.

Matching accessory for KRA-F8/21

Page
Connecting bridge, 10 pole

108
Labeling plate Series
KRA F8/F10

Matching accessory for KRA-S-F8/21

Connecting bridge,	Page
10 pole	108
Labeling plate Series KRA F8/F10	

Matching accessory for KRA-F8/21	
	Page
Connecting bridge, 10 pole	108
Labeling plate Series	
KRA F8/F10	108
Matching accessor KRA-S-F8/21	

KRA-F8/21

Coupling devices are used to secure electrical isolation between logic and load.

- Connection with spring-clamp terminal
- Additional terminals for jumper
- Test contacts for each terminal
- Safe separation

Operating voltage $24 \mathrm{~V} \mathrm{AC/DC}$
Current consumption max. 13 mA
Output / contact
Output / contact material $\quad \mathrm{AgSnO}_{2}$
Output / switching voltage $\quad 250 \mathrm{~V} \mathrm{AC/DC}$
Output / continuous current 8 A
Output / switching frequency $\quad 300$ cycles $/ \mathrm{h}$
Response time typical 10 ms
Release time typical 5 ms
Mechanical endurance 1×10^{7} switching cycles
Electrical endurance 1×10^{5} switching cycles
Solid wire cross-section $\quad 0.08 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2}$
Stranded wire without end sleeve $0.08 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2}$
Stranded wire with end sleeve $0.08 \mathrm{~mm}^{2}-1.5 \mathrm{~mm}^{2}$
Display
Green LED
Dimensions (W x H x D)
Weight
$11.2 \times 87.5 \times 60 \mathrm{~mm}$
43 g
Operating temperature range $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range $\quad-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection of the housing IP20

Wiring/Circuit diagram

P/N	Color	Feature 1	Feature 2
11070013	gray	$24 \mathrm{~V} \mathrm{AC/DC}$	1 DPST

Matching accessory for KRA-SR-F10/21

Connecting bridge, 10 pole

Labeling plate Series KRA F8/F10

KRA-SR-F10/21
Coupling devices are used to secure electrical isolation between logic and load.

- connection with spring-clamp terminal
- additional terminals for jumper
- test contacts for each terminal
- safe separation
- with manual control level and automatic-checkback function

Operating voltage
Current consumption
Output / contacts
Output / contact material
Output / switching voltage Output / continuous current Output / switching frequency Response time
Release time
Mechanical endurance
Electrical endurance
Solid wire cross-section
Stranded wire without end sleeve
Stranded wire with end sleeve
Display

Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range Ingress protection

24 V AC/DC approx. 13 mA 1 changeover contact (SPDT) AgSnO_{2} 250 V AC/DC
8 A
300 cycles/h
approx. 10 ms
approx. 5 ms
1×10^{7} switching cycles
1×10^{5} switching cycles
$0.08 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2}$
$0.08 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2}$
$0.08 \mathrm{~mm}^{2}-1.5 \mathrm{~mm}^{2}$
Green LED
$11.2 \times 87.5 \times 60 \mathrm{~mm}$
43 g
$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
IP20

Wiring/Circuit diagram

A1-A2
A2-A3
operating voltag
B1-B2
switching contact
11-12-1
output contact
1 changeover contact

\square

P/N	Color	Feature 1	Feature 2
11070813	gray	24 V AC/DC	1 DPST

KRA-SRA-F10/21
Coupling devices are used to secure electrical isolation between logic and load.

- Connection with spring-clamp terminal
- Additional terminals for jumper
- Test contacts for each terminal
- safe separation
- with manual control level and automatic-checkback function
- 3 LED-Indicator, status displays

Operating voltage
Current consumption
Outputs / contact
Output / contact material
Output / switching voltage
Output / continuous current
Output / switching frequency
Response time
Release time
Mechanical endurance
Electrical endurance
Solid wire cross-section
Stranded wire without end sleeve
Stranded wire with end sleeve
Display
Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
Ingress protection of the housing
24 V AC/DC
approx. 13 mA
1 changeover contact (SPDT)
AgSnO_{2}
250 V AC/DC
8 A
360 cycles/h
approx. 10 ms
approx. 5 ms
1×10^{7} switching cycles 1×10^{5} switching cycles $0.08 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2}$ $0.08 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2}$ $0.08 \mathrm{~mm}^{2}-1.5 \mathrm{~mm}^{2}$ Green, red and yellow LED
$11.2 \times 87.5 \times 60 \mathrm{~mm}$
43 g
$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
IP20

Wiring/Circuit diagram

P/N	Color	Feature 1	Feature 2
11071013	gray	24 V AC/DC	1 DPST

Matching accessory for KRA-F10/21-21

Page
Connecting bridge, 10 pole108
Labeling plate Series
KRA F8/F10 108

Matching accessory for KRA-S-F10/21-21

Connecting bridge,	
10 pole	108
Labeling plate Series KRA F8/F10 108$\$ l$	

KRA-F10/21-21

Coupling devices are used to electrical isolation between logic and load.

- Connection with spring-clamp terminal
- Additional terminals for jumper
- Test contacts for each terminal
- safe separation

Operating voltage
Current consumption
Outputs / contact
Output / contact material
Output / switching voltage
Output / continuous current
Output / switching frequency
Response time
Release time
Mechanical endurance
Electrical endurance
Solid wire cross-section
Stranded wire without end sleeve
Stranded wire with end sleeve
Display

Dimensions (W x H x D)
Weight
Operating temperature range

Ingress protection of the housing IP20

Wiring/Circuit diagram

P/N	Color	Feature 1	Feature 2
11070213	gray	24 V AC/DC	2 DPST

24 V AC/DC
approx. 16 mA 2 changeover contacts (DPDT) AgSnO_{2} $250 \mathrm{~V} \mathrm{AC/DC}$ 3 A 300 cycles/h approx. 10 ms approx. 5 ms
1×10^{7} switching cycles 1×10^{5} switching cycles $0.08 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2}$ $0.08 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2}$ $0.08 \mathrm{~mm}^{2}-1.5 \mathrm{~mm}^{2}$ Green LED
$11.2 \times 87.5 \times 60 \mathrm{~mm}$ 43 g
$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ $25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Wiring/Circuit diagram

P/N	Color	Feature 1	Feature 2
11070713	gray	24 V AC/DC	2 DPST

Matching accessory for KRA-M4/1, 1 normally open contact, 24 V AC/DC

Connecting bridge Series	
KRA M4/M6/M8	109
Labeling plate Series	
KRA M4/M6/M8	110

Matching accessory for KRA-M4/1, 1 normally open contact, 24 V DC

Connecting bridge Series

 KRA M4/M6/M8 110Labeling plate Series KRA M4/M6/M8

110

KRA-M4/1, 1 normally open contact, 24 V AC/DC

Coupling devices are used to secure electrical isolation between logic and load.

- Connection with screw-type terminals
- closed compact series
- integrated protective circuit
- safe separation

Operating voltage	$24 \mathrm{~V} \mathrm{AC/DC}$
Current consumption	approx. 13 mA
Output / contact	1 normally open contact (SPST-NO)
Output / contact material	AgSnO_{2}
Output / switching voltage	250 V AC/DC
Output / continuous current	6 A
Output / switch-on current	8 A
Output / switching frequency	600 cycles/h
Response time	10 ms
Release time	5 ms
Mechanical endurance	1×10^{7} switching cycles
Electrical endurance	1×10^{5} switching cycles
Cross-section	$2.5 \mathrm{~mm}^{2}$
Display	Red LED
Dimensions (W x H x D	$11.2 \times 61.3 \times 43 \mathrm{~mm}$
Weight	45 g
Operating temperature range	$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing / terminal block	IP40 / IP20

Wiring/Circuit diagram

A1-A2
tension de service
13-14 contact de sortie 1 contact à fermeture

P/N	Color	Feature 1	Feature 2
11061325	gray	24 V DC	1 normally open contact

KRA-M4/1, 1 normally open contact, 24 V DC

Coupling devices are used to secure electrical isolation between logic and load.

- Connection with screw-type terminals
- closed compact series
- integrated protective circuit
- safe separation

Operating voltage	24 V DC
Current consumption	approx. 13 mA
Output / contact	1 normally open contact (SPST-NO)
Output / contact material	AgSnO_{2}
Output / switching voltage	250 V AC/DC
Output / continuous current	6 A
Output / switch-on current	8 A
Output / switching frequency	600 cycles/h
Response time	10 ms
Release time	5 ms
Mechanical endurance	1×10^{7} switching cycles
Electrical endurance	1×10^{5} switching cycles
Cross-section	$2.5 \mathrm{~mm}^{2}$
Display	Red LED
Dimensions (W x H x D)	$11.2 \times 61.3 \times 43 \mathrm{~mm}$
Weight	45 g
Operating temperature range	$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing / terminal block	IP40 / IP20

P/N	Color	Feature 1	Feature 2
11061313	gray	24 V AC/DC	1 normally open contact

Matching accessory for KRA-M4/1, 1 normally open contact, 230 V AC

Connecting bridge Series	
KRA M4/M6/M8	110

Labeling plate Series
KRA M4/M6/M8

Matching accessory for KRA-M6/21, 1 changeover contact, 12 or 24 V AC/DC

Connecting bridge Series KRA M4/M6/M8

Labeling plate Series KRA M4/M6/M8

KRA-M4/1, 1 normally open contact, 230 V AC

Coupling devices are used to secure electrical isolation between logic and load.

- Connection with screw-type terminals
- closed compact series
- integrated protective circuit
- safe separation

Operating voltage	230 V AC
Current consumption	approx. 5 mA
Output / contact	1 normally open contact
	(SPST-NO)
Output / contact material	AgSnO_{2}
Output / switching voltage	$250 \mathrm{~V} \mathrm{AC/DC}$
Output / continuous current	6 A
Output / switch-on current	8 A
Output / switching frequency	600 cycles/h
Response time	10 ms
Release time	5 ms
Mechanical endurance	1×10^{7} switching cycles
Electrical endurance	1×10^{5} switching cycles
Cross-section	$2.5 \mathrm{~mm}^{2}$
Display	Red LED

Dimensions (W x H x D)
Weight
Operating temperature range
Storage
$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing / IP40 / IP20 terminal block

Wiring/Circuit diagram

$A 1$	$A 2$

A1-A2
operating voltage
13-14
output contact
1 NO contact

P/N	Color	Feature 1	Feature 2
11061305	gray	230 V AC	1 normally open contact

P/N	Color	Feature 1	Feature 2
11061550	gray	12 V AC/DC	1 DPST
11061513	gray	24 V AC/DC	1 DPST

Matching accessory for KRA-M6/21, 1 changeover contact, 24 V DC

Connecting bridge Series	
KRA M4/M6/M8	110

Labeling plate Series KRA M4/M6/M8

Matching accessory for KRA-M6/21, 1 changeover contact, 230 V AC

Connecting bridge Series
KRA M4/M6/M8
110
Labeling plate Series KRA M4/M6/M8

KRA-M6/21, 1 changeover contact, 24 V DC
Coupling devices are used to secure electrical isolation between logic and load.

- Connection with screw-type terminals
- closed compact series
- integrated protective circuit
- safe separation

Operating voltage 24 V DC
Current consumption 13 mA
Output / contacts 1 changeover contact (SPDT)
Output / contact material AgSnO
Output / switching voltage $250 \mathrm{~V} \mathrm{AC/DC}$
Output / continuous current 6 A
Output / switch-on current 8 A
Output / switching frequency 600 cycles/h
Response time 10 ms
Release time
Mechanical endurance
Electrical endurance
Cross-section
Display

Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
5 ms
1×10^{7} switching cycles
1×10^{5} switching cycles
$2.5 \mathrm{~mm}^{2}$
Red LED
$11.2 \times 61.3 \times 60 \mathrm{~mm}$
45 g
$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing / IP40 / IP20
terminal block

Wiring/Circuit diagram

A1-A2
operating voltage
11-12-14
output contact
1 changeover

KRA-M6/21, 1 changeover contact, 230 V AC
Coupling devices are used to secure electrical isolation between logic and load.

- Connection with screw-type terminals
- closed compact series
- integrated protective circuit
- safe separation

Operating voltage	230 V AC
Current consumption	5 mA
Output / contacts	1 changeover contact
	$(1 \mathrm{SPDT})$
Output / contact material	AgSnO_{2}
Output / switching voltage	$250 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
Output / continuous current	6 A
Output / switch-on current	8 A
Output / switching frequency	$360 \mathrm{cycles} / \mathrm{h}$
Response time	10 ms
Release time	15 ms
Mechanical endurance	1×10^{7} switching cycles
Electrical endurance	1×10^{5} switching cycles
Cross-section	$2.5 \mathrm{~mm}{ }^{2}$
Display	Red LED
Dimensions (W x H x D)	$11.2 \times 61.3 \times 60 \mathrm{~mm}$
Weight	45 g
Operating temperature range	$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing /	$\mathrm{IP40} / \mathrm{IP20}$
terminal block	

Wiring/Circuit diagram

P/N	Color	Feature 1	Feature 2
11061525	gray	24 VDC	1 changeover contact

P/N	Color	Feature 1	Feature 2
11061505	gray	230 V AC	1 changeover contact

Matching accessory for KRA-S-M6/21

Connecting bridge Series KRA M4/M6/M8110

KRA M4/M6/M8 110

Matching accessory for KRA-SR-M8/21

Connecting bridge Series KRA M4/M6/M8

Labeling plate Series KRA M4/M6/M8

KRA-S-M6/21
Coupling devices are used to electrical isolation between logic and load.

- Connection with screw-type terminals
- closed compact series
- integrated protective circuit
- with manual control level

Operating voltage AC/DC 24 V AC/DC
Current consumption 24 V AC/DC 13 mA
Output / contacts 1 changeover contact
(1 SPDT)
Output / contact material $\quad \mathrm{AgSnO}_{2}$
Output / switching voltage 250 V AC/DC
Output / continuous current 6 A
Output / switch-on current 8 A
Output / switching frequency 600 cycles $/ \mathrm{h}$
Response time 10 ms
Release time 5 ms
Mechanical endurance 1×10^{7} switching cycles
Electrical endurance 1×10^{5} switching cycles
Cross-section $\quad 2.5 \mathrm{~mm}^{2}$
Display
LED rot
$11.2 \times 61.3 \times 60 \mathrm{~mm}$
45 g
$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
IP40 / IP20
Ingress protection for housing terminal block

Wiring/Circuit diagram

A1	A2

A1-A2
operating voltage
A2-A3
operating voltag
11-12-14 output contact 1 changeover

KRA-SR-M8/21
Coupling devices are used to electrical isolation between logic and load.

- Connection with screw-type terminals
- closed compact series
- integrated protective circuit
- with manual control level and automatic checkback

Operating voltage AC/DC $24 \mathrm{~V} \mathrm{AC/DC}$
Current consumption 24 V AC/DC 13 mA
Output / contacts 1 changeover contact (SPDT)
Output / contact material $\quad \mathrm{AgSnO}_{2}$
Output / switching voltage 250 V AC/DC
Output / continuous current 6 A
Output / switch-on current 8 A
Output / switching frequency 600 cycles $/ \mathrm{h}$
Response time
Release time
Mechanical endurance
Electrical endurance
Cross-section
Display

Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
terminal block

Wiring/Circuit diagram

P/N	Color	Feature 1	Feature 2
11061213	gray	24 V AC/DC	1 changeover contact

P/N	Color	Feature 1	Feature 2
11064513	gray	24 V AC/DC	1 changeover contact

Matching accessory for KRA-M8/21-21, 2 changeover contact, 12 V or 24 V AC/DC

Connecting bridge Series KRA M4/M6/M8110
KRA M4/M6/M8 110

Matching accessory for KRA-M8/21-21, 2 changeover contact, 24 V DC

Connecting bridge Series KRA M4/M6/M8

Labeling plate Series KRA M4/M6/M8

KRA-M8/21-21, 2 changeover contact, 12 V or 24 V AC/DC

logic and load.

- Connection with screw-type terminals
- closed compact series
- integrated protective circuit
- safe separation

Operating voltage $\quad 12 \mathrm{~V}$ or $24 \mathrm{~V} \mathrm{AC/DC}$
Current consumption 12 V AC/DC 25 mA
Current consumption 24 V AC/DC 16 mA

Output / contacts	2 changeover contacts (DPDT)
Output / contact material	AgSnO_{2}
Output / switching voltage	$250 \mathrm{~V} \mathrm{AC/DC}$
Output / continuous current	4 A
Output / switching frequency	$360 \mathrm{cycles} / \mathrm{h}$
Response time	10 ms
Release time AC	15 ms
Release time DC	5 ms
Mechanical endurance	1×10^{7} switching cycles
Electrical endurance	6×10^{4} switching cycles
Cross-section	$2.5 \mathrm{~mm}{ }^{2}$
Display	Red LED
Dimensions (W x H x D)	$11.2 \times 61.3 \times 60 \mathrm{~mm}$
Weight	45 g
Operating temperature range	$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing /	$\mathrm{IP40} / \mathrm{IP20}$
terminal block	

Wiring/Circuit diagram

21-22-24 output contacts 2 changeover contacts

Wiring/Circuit diagram

KRA-M8/21-21, 2 changeover contact, 24 V DC

Coupling devices are used to electrical isolation between logic and load.

- Connection with screw-type terminals
- closed compact series
- integrated protective circuit
- safe separation

Operating voltage	24 V DC
Current consumption	16 mA
Output / contacts	2 changeover contacts (DPDT)
Output / contact material	AgSnO
Output / switching voltage	$250 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
Output / continuous current	4 A
Output / switching frequency	$360 \mathrm{cycles} / \mathrm{h}$
Response time	10 ms
Release time	5 ms
Mechanical endurance	1×10^{7} switching cycles
Electrical endurance	6×10^{4} switching cycles
Cross-section	$2.5 \mathrm{~mm}^{2}$
Display	Red LED
Dimensions (W x H x D)	$11.2 \times 61.3 \times 60 \mathrm{~mm}$
Weight	45 g
Operating temperature range	$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing /	$\mathrm{IP} 40 / \mathrm{IP} 20$
terminal block	

Matching accessory for KRA-M8/21-21, 2 changeover contact, 230 V AC

Connecting bridge Series KRA M4/M6/M8 110

Labeling plate Series KRA M4/M6/M8

Page

KRA-M8/21-21, 2 changeover contact, 230 V AC

Coupling devices are used to electrical isolation between logic and load.

- Connection with screw-type terminals
- closed compact series
- integrated protective circuit
- safe separation

Operating voltage 230 V AC
Current consumption 16 mA
Output / contacts
Output / contact material
Output / switching voltage
Output / continuous current
Output / switching frequency 360 cycles/h
Response time 10 ms
Release time 15 ms
Mechanical endurance 1×10^{7} switching cycles
Electrical endurance 6×10^{4} switching cycles
Cross-section $\quad 2.5 \mathrm{~mm}^{2}$
Display
Red LED
Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
$11.2 \times 61.3 \times 60 \mathrm{~mm}$ 45 g

Ingress protection for housing / IP40 / IP20 terminal block

Wiring/Circuit diagram

P/N	Color	Feature 1	Feature 2
11061905	gray	230 V AC	2 changeover contact

KRA-S12/21-21-21
Coupling devices are used to electrical isolation between logic and load.

- Connection with screw-type terminals

Operating voltage AC/DC $\quad 24 \mathrm{~V}$ AC/DC
Current consumption 24 V AC/DC 50 mA
Output / contacts 3 changeover contacts (3PDT)
Output / contact material
Output / switching voltage
Output / continuous current
Output / switch-on current
Output / switching frequency
Response time
Release time
Mechanical endurance
Electrical endurance
Cross-section
Display
Dimensions (W x H x D)
Weight
AgSnO_{2}
250 V AC/DC
6 A
8 A
360 cycles/h
10 ms
5 ms
1×10^{7} switching cycles
1×10^{5} switching cycles
$2.5 \mathrm{~mm}^{2}$
Red LED
$22.5 \times 75 \times 95 \mathrm{~mm}$
140 g
$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\begin{array}{ll}\text { Storage temperature range } & -25^{\circ} \mathrm{C} \text { to }+70 \\ \text { Ingress protection for housing / } & \text { IP40 / IP20 }\end{array}$
terminal block

Wiring/Circuit diagram

P/N	Color	Feature 1	Feature 2
11060913	gray	24 V AC/DC	3 changeover contact

Matching accessory for RM21-21 24 V DC

Page
RC module for industrial sockets

Matching accessory for RM21-21 24 V AC or 230 V AC

RC module for industrial sockets

RM21-21 24 V DC
Relay module for electrical isolation between logic and load.

- Connection with screw-type terminals
- pluggable relay
- with labeling field

Operating voltage
24 V DC
Current consumption
Output / contacts
Output / contact material
Output / switching voltage
Output / continuous current
Output / switching frequency
Mechanical endurance
Electrical endurance
Anschlussquerschnitt
Display
Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
\square
\square

RM21-21 24 V AC or 230 V AC
Relay module for electrical isolation between logic and load.

- Connection with screw-type terminals
- pluggable relay
- with labeling field

Operating voltage	24 V or 230 V AC
Current consumption 24 V AC	32 mA
Current consumption 230 V AC	3,3 mA
Output / contacts	2 changeover contacts (DPDT)
Output / contact material	AgNi 90/10
Output / switching voltage	250 V AC
Output / continuous current	8 A
Output / switching frequency	360 cycles/h
Mechanical endurance	5×10^{6} switching cycles
Electrical endurance	1×10^{6} switching cycles
Cross-section	$2 \times 2.5 \mathrm{~mm}^{2}$
Display	Red LED
Dimensions (W x H x D	$15.5 \times 75 \times 65 \mathrm{~mm}$
Weight	95 g
Operating temperature range	$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

21	11
24	14
A2	A1
22	12

A1-A2

 operating voltag 11-12-14 21-22-24 output contacts contactsWiring/Circuit diagram

P/N	Color	Feature 1	Feature 2
11050725	black	24 V DC	2 changeover contact

P/N	Color	Feature 1	Feature 2
11050710	black	24 V AC	2 changeover contact
11050705	black	230 V AC	2 changeover contact

Matching accessory for RM3-2W 24 V DC

Page
RC module for industrial sockets

Matching accessory for RM3-2W 24 V AC or 230 V AC

RC module for industrial sockets sockets 111
Matching accessory for
RM3-2W 24 V DC

RM3-2W 24 V DC

Relay module for electrical isolation between logic and load.

- Connection with screw-type terminals
- pluggable relay
- with labeling field

Operating voltage
Current consumption
Output / contacts
Output / contact material
Output / switching voltage
Output / continuous current
Output / switching frequency
Mechanical endurance
Electrical endurance
Cross-section
Display
Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range

24 V DC
17 mA
2 changeover contacts (DPDT)
AgNi 90/10
250 V AC
8 A
360 cycles $/ \mathrm{h}$
30×10^{6} switching cycles
1×10^{6} switching cycles
$2 \times 2.5 \mathrm{~mm}^{2}$
Red LED
$15.5 \times 75 \times 65 \mathrm{~mm}$
95 g
$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Wiring/Circuit diagram

22	12
21	11
24	14
A2	

operating voltage
11-12-14
21-22-24
output contacts 2 changeover contacts

Wiring/Circuit diagram

P/N	Color	Feature 1	Feature 2
11051025	black	24 V DC	2 changeover contact

P/N	Color	Feature 1	Feature 2
11051010	black	24 V AC	2 changeover contact
11051005	black	230 V AC	2 changeover contact

KRE-M4/1 DC

Transistor couplers are used for switching DC loads.

- Connection with screw-type terminals
- Protective diode

Input / operating voltage	24 V DC
Input / power consumption	10 mA
Output / switching voltage	4 to 48 V DC
Output / continuous current	0.8 A
Output / current pulse	$2 \mathrm{~A} / 1 \mathrm{~s}$
Cross-section	2.5 mm
Display	Green LED
Dimensions (W x H x D)	$11.2 \times 61.3 \times 43 \mathrm{~mm}$
Weight	35 g
Operating temperature range	$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Storage temperature range	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing /	$\mathrm{IP} 40 / \mathrm{IP} 20$
terminal block	

Wiring/Circuit diagram

A1	A2

A1-A2
operating voltage
13-14 electronic output

KRE-M4/1 AC
Triac couplers are used for switching AC loads.

- Connection with screw-type terminals
- Zero point switch
- RC element

Input / operating voltage	24 V DC
Input / power consumption	10 mA
Output / switching voltage	26 to 250 V AC
Output / continuous current	0.8 A
Output / current pulse	$2 \mathrm{~A} / 1 \mathrm{~s}$
Cross-section	$2.5 \mathrm{~mm}^{2}$
Display	Green LED
Dimensions (W x H x D)	$11.2 \times 61.3 \times 43 \mathrm{~mm}$
Weight	35 g
Operating temperature range	$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Storage temperature range	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing /	$\mathrm{IP} 40 / \mathrm{IP} 20$
terminal block	

P/N	Color	Feature 1	Feature 2
1106302517	gray		

P/N	Color	Feature 1	Feature 2
1106312518	gray		

Matching accessory for KMA-F8

	Page
Connecting bridge,	
10 pole	108
Labeling plate Series	
KMA F8	109

Matching accessory for KMAi-F8

Connecting bridge,	Page
10 pole	108
Labeling plate Series KMA F8 109	

Labeling plate Series
KMA F8

KMA-F8

The analog encoder is used as encoder for manual control variable definition, e.g. mixing valves, valve positions, temperature values, etc. The module can be operated in three modes, which can be commuted by means of integrated three-level switches (ON, OFF, automatic). The switch position is signalized by external control contact terminals B1 and B2. The control variable can be set on the potentiometer at the front. The output signal 0 to 10 V is available on the Y terminal. If the switch is in "AUTO" position, the control variable is looped through over the YR terminal to the Y output without change.

- Connection by spring clamp terminal blocks (push-in)
- Setpoint device
- Manual control level with checkback
- LED brightness proportional to control variable

Input / operating voltage	$24 \mathrm{~V} \mathrm{AC/DC}$
Input / power consumption	30 mA
Input / power consumption	19 mA
Input / voltage	0 to 10 V DC
Output / voltage	0 to 10 V DC
Display	Red LED
Dimensions (W x H x D)	$11.2 \times 87.5 \times 60 \mathrm{~mm}$
Weight	43 g
Operating temperature range	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing / terminal block	$\mathrm{IP} 40 / \mathrm{IP20}$

Wiring/Circuit diagram

P/N	Color	Feature 1	Feature 2
110730	gray	24 V AC/DC	$0-10$ V DC
11073001	gray	24 V AC/DC	0 - 10 V DC Return voltage proof

KMAi-F8
The analog encoder is used for manual control variable settings for example for mixing valves, valve positions, temperature values etc. The module can be controlled in two operating modes that are set by means of the three level switch (ON, OFF, AUTO) on the front. The switch position is confirmed via the two external control contacts B1 and B2. Switch position "ON" The control variable can be set with the potentiometer on the front. The output signal 0 to 20 mA is available at contact Y. The current flow at input YR is not interrupted when the switch is in position ON or OFF.
Switch position "AUTO"
The input current (YR) is transmitted to the control variable output Y with a tolerance of $+/-5 \%$ (full scale value).

- Connection by spring clamp terminal blocks (push-in)
- Setpoint generator
- Manual control level with checkback function
- LED brightness proportional to control variable

Input / operating voltage	$24 \mathrm{~V} \mathrm{AC/DC}$
Input / Current consumption AC	30 mA
Input / Current consumption DC	19 mA
Input / voltage	0 to 20 mA DC
Output / voltage	0 to 20 mA DC
Display	Red LED
Dimensions (W x H x D)	$11.2 \times 87.5 \times 60 \mathrm{~mm}$
Weight	43 g
Operating temperature range Storage temperature range	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Ingress protection for housing /	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
terminal block	

Wiring/Circuit diagram

P/N	Color	Feature 1	Feature 2
110731	gray	24 V AC/DC	$0-20 \mathrm{~mA}$

KMA-E08

The analog encoder is used as encoder for manual control variable definition, e.g. mixing valves, valve positions, temperature values, etc. The module can be operated in two modes, which can be commuted by means of integrated two-level switches (manual, automatic). The switch position is signalized by external control contact terminals S1 and S2. The control variable can be set on the potentiometer at the front. The output signal 0 to 10 V is available on the Y terminal. If the switch is in "AUTO" position, the control variable is looped through over the YR terminal to the Y output without change.

- Setpoint device
- Manual control level with checkback
- LED brightness proportional to control variable

Input / Operating voltage	$24 \mathrm{~V} \mathrm{AC/DC}$
Input / Current consumption AC	24 mA
Input / Current consumption DC	19 mA
Input / voltage	0 to 10 V DC
Output / voltage	0 to 10 V DC
Display	Red LED
Dimensions (W x H x D)	$22.5 \times 61.3 \times 60 \mathrm{~mm}$
Weight	70 g
Operating temperature range Storage temperature range	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Ingress protection for housing /	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
terminal block	

Wiring/Circuit diagram

P/N	Color	Feature 1	Feature 2
110660	gray	24 V AC/DC	$0-10 \mathrm{~V}$
11066001	gray	24 V AC/DC	$0-10 \mathrm{~V}$ DC Return voltage proof

KMAi-E08
The analog encoder is used for manual control variable settings for example for mixing valves, valve positions, temperature values etc. The module can be controlled in two operating modes that are set by means of the two level switch (Hand, Auto) on the front. The switch position is confirmed via the two external control contacts B1 and B2. Switch position "Hand" (manual mode)The control variable can be set with the potentiometer on the front. The output signal 0 to 20 mA is available at contact Y. The current flow at input YR is not interrupted.
Switch position "Auto"
The input current (YR) is transmitted to the control variable output Y with a tolerance of $+/-5 \%$ (full scale value).

- Setpoint generator
- Manual control level with checkback function
- LED brightness proportional to control variable

Input / operating voltage	$24 \mathrm{~V} \mathrm{AC/DC}$
Input / Current consumption AC	50 mA
Input / Current consumption DC	30 mA
Input / current	0 to 20 mA DC
Output / current	0 to 20 mA DC
Display	Red LED
Dimensions (W x H x D)	$22.5 \times 61.3 \times 60 \mathrm{~mm}$
Weight	70 g
Operating temperature range Storage temperature range Ingress protection for housing /	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C} 40 / \mathrm{CP} 20$
terminal block	

Wiring/Circuit diagram

P/N	Color	Feature 1	Feature 2
110659	gray	24 V AC/DC	$0-20 \mathrm{~mA}$

Matching accessory for PV10 F10

Labeling plate Series KRA-F8/F10

KRS-E06
The threshold gate switches units, pumps, fans, burners, etc. As soon as the input voltage reaches the switching threshold, the relay is activated. When the input voltage falls below the switch-off threshold, the relay is released again.

- Connection with screw-type terminals

Operating voltage	$24 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
Current consumption 24 V AC	80 mA
Current consumption 24 V DC	16 mA
Threshold voltage	3.0 V DC
Switch-off voltage	2.5 V DC
Output / voltage	250 V AC
Output / contact	$1 \mathrm{changeover} \mathrm{contact} \mathrm{(SPST)}$
Output / contact material	AgSnO
Output / continuous current	6 A
Output / switching frequency	$1200 \mathrm{cycles} / \mathrm{h}$
Mechanical endurance	1×10^{7} switching cycles
Electrical endurance	1×10^{5} switching cycles
Display	Yellow LED
Dimensions (W x H x D)	$17.5 \times 61.3 \times 60 \mathrm{~mm}$
Weight	70 g
Operating temperature range	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Storage temperature range	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing /	$\mathrm{IP} 40 / \mathrm{IP} 20$
terminal block	

Wiring/Circuit diagram

A1	A2	YR
11	12	14

P/N	Color	Feature 1	Feature 2
110655	gray	2.5 V off 3 V on	w/o manual control

P/N	Color	Feature 1	Feature 2
110661	gray	2.5 V off 3 V on	with manual control

KRS-E08 HR

The threshold gate switches units, pumps, fans, burners, etc. As soon as the input voltage reaches the switching threshold, the relay is activated. When the input voltage falls below the switch-off threshold, the relay is released again.

- with manual control level
- Connection with screw-type terminals

Operating voltage $24 \mathrm{~V} \mathrm{AC/DC}$
Current consumption 24 V AC $\quad 80 \mathrm{~mA}$
Current consumption 24 V DC $\quad 16 \mathrm{~mA}$
Threshold voltage $\quad 3.0 \mathrm{~V}$ DC
Switch-off voltage $\quad 2.5 \mathrm{~V}$ DC
Output / voltage 250 V AC
Output / contact 1 changeover contact (SPDT)
Output / contact material $\quad \mathrm{AgSnO}_{2}$
Output / continuous current 6 A
Output / switching frequency 1200 cycles/h
Mechanical endurance 1×10^{7} switching cycles
Electrical endurance 1×10^{5} switching cycles
Display Yellow LED

Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range 70 g

Ingress protection for housing / IP40 / IP20
terminal block
$22.5 \times 61.3 \times 60 \mathrm{~mm}$
$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

P40

Wiring/Circuit diagram

A1	A2	YR	B1
11	112	14	B2

A1-A2
operating voltage
$24 V A C D C$
B1-B2
manual checkback
function
YR
signal input
$11-12-14$
output contact
1 changeover

P/N	Color	Feature 1	Feature 2
110667	gray	2.5 V off 3 V on	1 DPST

P/N	Color	Feature 1	Feature 2
110666	gray	selectable	1 DPST

KRS-E08 3

The threshold gate switches units, pumps, fans, burners, etc. As soon as the input voltage reaches the switching threshold, the relay is activated. When the input voltage falls below the switch-off threshold, the relay is released again. The module is designed for a two-level control by means of an analog 0 to 10 V DC control signal.

- Control signal 0 V DC $=$ Level 1 active
- Control signal 5 V DC $=$ No level is active (OFF)
- Control signal 10 V DC $=$ Level 2 active
- Connection with screw-type terminals

Operating voltage	$24 \mathrm{~V} \mathrm{AC/DC}$
Current consumption 24 V AC	100 mA
Current consumption 24 V DC	35 mA
Output / voltage	250 V AC
Output / contact	1 changeover contact with 0 position
Output / contact material	AgSnO_{2}
Output / continuous current	4 A
Output / switching frequency	1200 cycles/h
Mechanical endurance	1×10^{7} switching cycles
Electrical endurance	1×10^{5} switching cycles
Display	Yellow and red LED
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)	$22.5 \times 61.3 \times 60 \mathrm{~mm}$
Weight	70 g
Operating temperature range	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Storage temperature range	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing / terminal block	IP40 / IP20

Wiring/Circuit diagram

A1		Y	$A 2$

P/N	Color	Feature 1	Feature 2
110673	gray	2.5 V off 7 V o	3 V off 7.5 V on

P/N	Color	Feature 1	Feature 2
110672	gray	2.5 V off 7 V on	3 V off 7.5 on

KRS1-E08 HR3

The threshold gate switches units, pumps, fans, burners, etc. As soon as the input voltage reaches the switching threshold, the relay is activated. When the input voltage falls below the switch-off threshold, the relay is released again. The module is designed for a two-level control by means of an analog 0 to 10 V DC control signal.

- Control signal 0 V DC $=$ No level is active (OFF)
- Control signal 5 V DC $=$ Level 1 active
- Control signal 10 V DC $=$ Level 1 and Level 2 active
- with manual control level
- Connection with screw-type terminals

Operating voltage	$24 \mathrm{~V} \mathrm{AC/DC}$
Current consumption 24 V AC	100 mA
Current consumption 24 V DC	35 mA
Output / voltage	250 V AC
Output / contact	2 levels with 0 position
Output / contact material	AgSnO
Output / continuous current	4 A
Output / switching frequency	$1200 \mathrm{cycles} / \mathrm{h}$
Mechanical endurance	1×10^{7} switching cycles
Electrical endurance	1×10^{5} switching cycles
Display	Yellow and red LED
Dimensions (W x H x D)	$22.5 \times 61.3 \times 60 \mathrm{~mm}$
Weight	70 g
Operating temperature range Storage temperature range	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Ingress protection for housing /	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
IP $40 / \mathrm{IP} 20$	

Wiring/Circuit diagram

A1	B1	Y	A2				

KRS-E08 HR3

The threshold gate switches units, pumps, fans, burners, etc. As soon as the input voltage reaches the switching threshold, the relay is activated. When the input voltage falls below the switch-off threshold, the relay is released again. The module is designed for a two-level control by means of an analog 0 to 10 V DC control signal.

- Control signal 0 V DC $=$ Level 1 active
- Control signal $5 \mathrm{~V} D C=$ No level is active (OFF)
- Control signal 10 V DC $=$ Level 2 active
- with manual control level
- Connection with screw-type terminals

Operating voltage	$24 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
Current consumption 24 V AC	100 mA
Current consumption 24 V DC	35 mA
Output / voltage	250 V AC
Output / contact	1 changeover contact
	with 0 position
Output / contact material	AgSnO
Output / continuous current	4 A
Output / switching frequency	1200 cycles/h
Mechanical endurance	1×10^{7} switching cycles
Electrical endurance	1×10^{5} switching cycles
Display	Yellow and red LED
Dimensions (W x H x D)	$22.5 \times 61.3 \times 60 \mathrm{~mm}$
Weight	70 g
Operating temperature range	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Storage temperature range	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing /	$\mathrm{IP40} / \mathrm{IP20}$
terminal block	

Wiring/Circuit diagram

P/N	Color	Feature 1	Feature 2
110665	gray	$2.5 \mathrm{~V}, 7 \mathrm{~V}$ off	$3 \mathrm{~V}, 7.5 \mathrm{~V}$ on

P/N	Color	Feature 1	Feature 2
11043413	gray		

KRZ-E08 HR

The coupling module is designed for two-level motor control.

- Interlocked relays
- Manual control level
- Connection with screw-type terminals

Operating voltage	$24 \mathrm{~V} \mathrm{AC/DC}$
Power consumption $24 \mathrm{~V} \mathrm{AC/DC}$	30 mA
Output / contacts	$1 \mathrm{changeover} \mathrm{contact} \mathrm{(SPDT)}$
Output / contact material	AgSnO
Output / switching voltage	$250 \mathrm{~V} \mathrm{AC/DC}$
Output / continuous current	4 A
Output / switch-on current	6 A
Output / switching frequency	1200 cycles/h
Response time	20 ms
Release time AC/DC	20 ms
Mechanical endurance	1×10^{7} switching cycles
Electrical endurance	1×10^{5} switching cycles
Cross-section	$2.5 \mathrm{~mm}{ }^{2}$
Display	2 red LEDs
Dimensions (W x H x D)	$22.5 \times 61.3 \times 60 \mathrm{~mm}$
Weight	70 g
Operating temperature range	$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing /	$\mathrm{IP40} / \mathrm{IP20}$
terminal block	

Wiring/Circuit diagram

P/N	Color	Feature 1	Feature 2
110668132722	gray	switchover	$0-1-2$
110676132722	gray	switchover	$1-0-2$

PT-C12 / PTi-C12

The potential isolator / signal converter is used for isolating analog signals in the range from 0 to 10 V DC , and 0 to 20 mA DC or for a signal conversion from 0 to 10 V DC to 0 to 20 mA DC or 0 to 20 mA DC to 0 to 10 V DC. The input and output signals as well as the supply voltage are electrically isolated from each other. An input signal from 0 to 10 V or 0 to 20 mA can be connected to the device.
Electrical isolation function:
With the PT-C12, the input signal 0 to 10 V is adjusted proportionally to the output signal 0 to 10 V . The PTi-C12 adjusts the input signal from 0 to 20 mA proportional to the output signal from 0 to 20 mA .
Function Signal conversion with potential separation: With a signal conversion from 0 to 10 V to 0 to 20 mA , or from 0 to 20 mA to 0 to 10 V , the output signal converted thereby can be readjusted using an integrated spindle trimmer. In addition, a manual emergency operating option with a MANUAL AUTO switch with feedback contact is also integrated. The output signal from 0 to 10 V or 0 to 20 mA can be set via the front potentiometer when the switch is in the MANUAL position. A constant output voltage of max. 10 V DC and 5 mA is available at the 10 V terminal. Input Y is used for the LED display of the output voltage Ua. The brightness of the LED depends on the level of the output signal (bridge between Ua and Y). Alternatively, an external signal at the input Y can be connected to the LED display from 0 to 10 V DC.

Operating voltage	$24 \mathrm{~V} \mathrm{AC/DC}$
Test voltage / separation	1000 V DC
Input / voltage	0 to 10 V DC
Input / current	0 to 20 mA DC
Output / fix voltage	10 V DC / 5 mA , fix
Output / proportional voltage	0 to $10 \mathrm{~V} / \mathrm{max} .10 \mathrm{~mA}$
Output / proportional current	0 to 20 mA
Output / current load	max. 500 Ohm
Display	Green LED
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)	$35 \times 69.3 \times 60 \mathrm{~mm}$
Weight	78 g
Operating temperature range	$0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$
Ingress protection for housing / terminal block	IP40 / IP20

Wiring/Circuit diagram

P/N	Color	Feature 1	Feature 2
110501	gray	24 V AC/DC	voltage balanced
11050108	gray	24 V AC/DC	current balanced

P/N	Color	Feature 1	Feature 2
110502	gray	230 V AC	voltage balanced
11050208	gray	230 V AC	current balanced

Interface modules | AD/DA converter

KAD-C12
The digital/analog converter is designed to convert contacts into an analog signal. The inputs are scanned in steps of 0.5 V . They can be connected to and scanned at a compact control with an analog input ($0-10 \mathrm{~V}$). The bridged inputs are signalized by means of LEDs. Example: S1 and S4 bridged corresponds to an output voltage of 4.5 V.

- Switching states are indicated by means of LEDs
- Connection with screw-type terminals

Operating voltage
24 V AC/DC
Current consumption 24 V AC $\quad 60 \mathrm{~mA}$
Current consumption 24 V DC $\quad 50 \mathrm{~mA}$
Input / scanning
Output / voltage
Display
Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing / IP40 / IP20
terminal block

Output V DC	Inputs S				Output V DC	Inputs S				
	1	2	3	4				2	3	4
0.0 V	0	0	0	0	4.5 V			0	0	1
0.5 V	1	0	0	0	5.0 V			1	0	1
1.0 V	0	1	0	0	5.5 V			1	0	1
1.5 V	1	1	0	0	6.0 V			0	1	1
2.0 V	0	0	1	0	6.5 V			0	1	1
2.5 V	1	0	1	0	7.0 V			1	1	1
3.0 V	0	1	1	0	7.5 V			1	1	1
3.5 V	1	1	1	0	$>7.5 \mathrm{~V}$			1	1	1
4.0 V	0	0	0	1						

Value of the inputs

$\mathrm{S} 1=0.5 \mathrm{~V}$	$\mathrm{~S} 2=1.0 \mathrm{~V}$	$\mathrm{~S} 3=2.0 \mathrm{~V}$	$\mathrm{~S} 4=4.0 \mathrm{~V}$

Wiring/Circuit diagram

A1	A2	Y	1	\perp	S1
A1-A2 operating voltage 24 V ACDC $Y-\perp$ analog output S1 ... S4-1 digital input					
\perp	52	\perp	53	1	54

P/N	Color	Feature 1	Feature 2
110656	gray	$4 \times$ D/A converter	$0-7.5$ V output

ADU-C12
The analog/digital converter ADU-C12 processes input voltages from 0 to 7.5 V DC in 0.5 V steps. The digital outputs switch according to the applied input voltage. The outputs are updated every 1.5 seconds, and the switching state is signalized by means of an LED.

- Switching states are indicated by means of LEDs
- Connection with screw-type terminals

Operating voltage	$24 \mathrm{~V} \mathrm{AC/DC}$
Current consumption 24 V AC	35 mA
Current consumption 24 V DC	16 mA
Input / voltage	0 to 10 V
Input / scanning	0.5 V steps
Output / voltage	up to $40 \mathrm{~V} \mathrm{AC/DC}$
Output / power consumption	max. $100 \mathrm{~mA} /$ channel
Display	Green and yellow LED
Dimensions (W x H x D)	$35 \times 69.3 \times 60 \mathrm{~mm}$
Weight	30 g
Operating temperature range	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Storage temperature range	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing /	$\mathrm{IP} 40 / \mathrm{IP} 20$

Ingress protection for housing / IP40 / IP20 terminal block

Input V DC	Outputs				Input V DC	Outputs			
	1	2		4		1	2	3	4
0.0 V	0	0	0	0	4.5 V	1	0	0	1
0.5 V	1	0	0	0	5.0 V	0	1	0	1
1.0 V	0	1	0	0	5.5 V	1	1	0	1
1.5 V	1	1	0	0	6.0 V	0	0	1	1
2.0 V	0	0	1	0	6.5 V	1	0	1	1
2.5 V	1	0	1	0	7.0 V	0	1	1	1
3.0 V	0	1	1	0	7.5 V	1	1	1	1
3.5 V	1	1	1	0	$>7.5 \mathrm{~V}$	1	1	1	1
4.0 V	0	0	0	1					

Wiring/Circuit diagram

P/N	Color	Feature 1	Feature 2
11043513	gray	$4 \times$ A/D converter	$0-10 \mathrm{~V}$ input

RTM-C12
The timer relay is used for pulse prolongation. When the control contact is closed min. 5 ms , the relay is activated and releases after the adjusted pulse time has lapsed. Further control pulses during the pulse time do not have any effect.

- Adjustable pulse length: 0.15 to 3 s
- Connection with screw-type terminals

Wiring/Function diagram

Operating voltage
Current consumption max.
Continuous current max.
Output / contact
Output / contact material
Response time typical
Release time typical
Recovery time
Minimum switch-on duration
Mechanical endurance
Electrical endurance
Wire cross section solid wire

Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing / IP40 / IP20
terminal block
24 V AC/DC less than or equal to 15 mA 8 A
2 changeover contacts (DPDT) AgNi 90/10 gold plated 20 ms
20 ms
greater than or equal to 20 ms greater than or equal to 5 ms 3×10^{7} switching cycles 1×10^{5} switching cycles $2.5 \mathrm{~mm}^{2}$ / AWG 14
$35 \times 69.3 \times 60 \mathrm{~mm}$
160 g
$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
 A1-A2 operating voltage B1-B2 control contact is not potential free!
15-16-18
25-26-28 contacts

P/N	Color	Feature 1	Feature 2
11027613	gray	24 V AC/DC	2 DPST

RTM-C12 230 V

The timer relay is used for pulse prolongation. When the control contact is closed min .5 ms , the relay is activated and releases after the adjusted pulse time has lapsed. Further control pulses during the pulse time do not have any effect.

- Adjustable pulse length: 0.15 to 3 s
- Connection with screw-type terminals

P/N	Color	Feature 1	Feature 2
11027605	gray	230 V AC	2 DPST

Operating voltage
Current consumption max.
Continuous current max.
Output / contact
Output / contact material Response time typical Release time typical Recovery time
Minimum switch-on duration Mechanical endurance
Electrical endurance Wire cross section solid wire

Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range $\quad-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Ingress protection for housing / IP40 / IP20 terminal block

Wiring/Function diagram

SMM-E16
The annunciator module can indicate to 10 incoming messages by means of a relay. The relay is activated as soon as a voltage is applied to min. one of the 10 inputs. The supply voltage has to be applied continuously to the terminals L1 - N. Several modules with the same voltage can be grouped over the input/ output "S". As soon as one relay of the modules is activated, all other relays of the modules operated in parallel are activated.

- Cascade connection of the devices possible
- 10 signal inputs
- Connection with screw-type terminals

Operating voltage $24 \mathrm{~V} \mathrm{AC/DC} ,230 \mathrm{~V} \mathrm{AC/DC}$
Power consumption: 24 V AC/DC 20 mA
Power consumption: 230 V AC/DC 20 mA

Output / contact	1 changeover contact (SPDT)
Output / contact material	AgSnO_{2}
Output / switching voltage	250 V
Output / continuous current	4 A
Output / switching frequency	1200 cycles/h
Response time	10 ms
Release time	5 ms
Mechanical endurance	1×10^{7} switching cycles
Electrical endurance	1×10^{5} switching cycles
Cross-section	2.5 mm ${ }^{2}$
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)	$22.5 \times 61.3 \times 60 \mathrm{~mm}$
Weight	70 g
Operating temperature range	$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-25^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$
Ingress protection for housing / terminal block	IP40 / IP20

Wiring/Circuit diagram

P/N	Color	Feature 1	Feature 2
110518	gray	230 V AC	1 DPST
11051813	gray	24 V AC/DC	1 DPST

STM-C12

When a fault message is applied, an alarm signal, a flashing signal and a horn relay are activated. The horn relay can be switched off by means of the incorporated pushbutton or an externally applied signal. An active alarm signal is shown as long as it is applied.

- acknowledgeable horn output
- Connection with screw-type terminals

Operating voltage	$24 \mathrm{~V} \mathrm{AC/DC} ,230 \mathrm{~V} \mathrm{AC/DC}$
Current consumption	less than 60 mA
Output / contact	3 relay outputs
Output / contact material	AgSnO_{2}
Output / switching voltage	250 V
Output / continuous current	4 A
Output / switching frequency	360 cycles/h
Mechanical endurance	1×10^{7} switching cycles
Electrical endurance	$6 \times 10^{4} \mathrm{Schaltspiele}$
Cross-section	$2.5 \mathrm{~mm}^{2}$
Display	Yellow LED
Dimensions (W x H x D)	$35 \times 69.3 \times 60 \mathrm{~mm}$
Weight	70 g
Operating temperature range	$0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing /	$\mathrm{IP40} / \mathrm{IP} 20$
terminal block	

Wiring/Circuit diagram

P/N	Color	Feature 1	Feature 2
110520	gray		

KD-M8/4E

The diode module is equipped with 4 individual diodes. The modules are used for inverse-polarity protection, decoupling and arc extinction.

- individual circuit
- Connection with screw-type terminals

Cut-off voltage
Input / voltage
Forward current
Forward voltage
Total current through all diodes less than or equal to 1.8 A
Cut-off current

Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing / IP40/IP20
terminal block
1000 V $250 \mathrm{~V} \mathrm{AC/DC}$
1 A
1.1 V at 1 A $30 \mu \mathrm{~A}$ at $75^{\circ} \mathrm{C}$
$11.2 \times 61.3 \times 60 \mathrm{~mm}$ 30 g
$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Wiring/Circuit diagram

1	2
3	4
5	
7	6
7	8

P/N	Color	Feature 1	Feature 2
110641	gray	common cathode	7 diodes

KD-M8/7K

The diode module is equipped with 7 diodes. The cathodes of the diodes are all connected to each other. The module is used for failure indication systems (collective fault message).

- common cathode
- Connection with screw-type terminals

Cut-off voltage
Input / voltage
Forward current
Forward voltage
Total current through all diodes Cut-off current

Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing
terminal block

1000 V 250 V AC/DC 1 A 1.1 V at 1 A ess than or equal to 1.8 A $30 \mu \mathrm{~A}$ at $75^{\circ} \mathrm{C}$
$11.2 \times 61.3 \times 60 \mathrm{~mm}$ 20 g $-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ IP40 / IP20

KD-M8/7A

The diode module is equipped with 7 diodes. The anodes of the diodes are all connected to each other. The module is used for failure indication systems (lamp tests).

- common anode
- Connection with screw-type terminals

Cut-off voltage	1000 V
Input / voltage	$250 \mathrm{~V} \mathrm{AC/DC}$
Forward current	1 A
Forward voltage	1.1 V at 1 A

Total current through all diodes less than or equal to 1.8 A
Cut-off current $30 \mu \mathrm{~A}$ at $75^{\circ} \mathrm{C}$

Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range $11.2 \times 61.3 \times 60 \mathrm{~mm}$ 20 g
$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$

Ingress protection for housing / IP40 / IP20
terminal block

Wiring/Circuit diagram

1	2
3	4
5	
7	6
7	8

P/N	Color	Feature 1	Feature 2
110640	gray	common anode	7 diodes

KD-S12/11K

- common cathode
- Connection with screw-type terminals

Cut-off voltage
Input / voltage
Forward current
Forward voltage
Total current through all diodes Cut-off current

Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range Ingress protection for housing terminal block

The diode module is equipped with 11 diodes. The cathodes of the diodes are all connected to each other. The module is used for failure indication systems (collective fault message).
 250 V AC/DC

1 A
1.1 V at 1 A
less than or equal to 3.2 A
$30 \mu \mathrm{~A}$ at $75^{\circ} \mathrm{C}$
$22.5 \times 75 \times 95 \mathrm{~mm}$
20 g
$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ IP40 / IP20

Wiring/Circuit diagram

1	2	3
4	5	6
7	8	9
10	11	12

P/N	Color	Feature 1	Feature 2
110629	gray	common anode	11 diodes

KD-S12/11A

The diode module is equipped with 11 diodes. The anodes of the diodes are all connected to each other. The module is used for failure indication systems (lamp tests).

- common anode
- Connection with screw-type terminals

Cut-off voltage	1000 V
Input / voltage	$250 \mathrm{~V} \mathrm{AC/DC}$
Forward current	1 A
Forward voltage	1.1 V at 1 A

Total current through all diodes less than or equal to 3.2 A
Cut-off current $\quad 30 \mu \mathrm{~A}$ at $75^{\circ} \mathrm{C}$

Dimensions (W x H x D) $22.5 \times 75 \times 95 \mathrm{~mm}$
Weight 20 g
Operating temperature range $-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Storage temperature range $\quad-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Ingress protection for housing / IP40 / IP20 terminal block

Wiring/Circuit diagram

1	2	3			
4	5	6			
7					
7	8	9			
10	11	12			

P/N	Color	Feature 1	Feature 2
110628	gray	common anode	11 diodes

Matching accessory for MC274-4W

	Page
Socket 14 poles	106
Socket 14 poles for electronic modules	107
Socket with spring-clamp terminals	107
Matching accessory for Socket 14 poles	
MC274-4W	106
Connecting bridge for	
industrial sockets	111
Holding bracket wire	112
Holding bracket plastic	112

MC274-4W
Compact, pluggable relay for industrial use.

- Socket pins as soldering lugs
- mechanical switch position display
- With manual test button
- cadmium-free contacts
- LED-Indicator

Operating voltage AC	24 V AC or 230 V AC
Operating voltage DC	24 V DC
Current consumption 24 V AC	65 mA
Current consumption 24 V DC	41 mA
Current consumption 230 V AC	8 mA
Continuous current	7 A
Output / contact	4 changeover contacts (4DPST)
Output / contact material	Silver alloy
Output / switching capacity	1500 VA
Mechanical endurance	1×10^{7} switching cycles
Display	LED and mechanical
Dimensions (W x H x D)	$21 \times 35.5 \times 27.4 \mathrm{~mm}$
Weight	35 g
Operating temperature range	$-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Wiring AC/Wiring DC

P/N	Color	Feature 1	Feature 2
110017051407	gray	230 V AC	4 DPST
110017101407	gray	24 V AC	4 DPST
110017251407	gray	24 V DC	4 DPST

Socket 14 poles

14-pole relay socket for commercially available industrial relays with screw-type terminals. All metal parts are arranged under cover to protect them against contact. The relay socket matches MC274.

- Optional bracket
- integrated quick fastening for DIN rail
- Terminal designation to EN 50022
- separate input and output

Nominal current	10 A
Nominal voltage	300 V AC
Electric strength	
Coil / contact	$2500 \mathrm{~V} / 50 \mathrm{~Hz} / 1 \mathrm{~min}$
Isolationsgruppe	VDE 0110 b C 250
Ambient temperature	$+70^{\circ} \mathrm{C}$
Protection against contact	VBG 4
Solid wire cross-section	$2 \times 2.5 \mathrm{~mm}^{2}$
Stranded wire with end sleeve	$2 \times 1.5 \mathrm{~mm}^{2}$
Screw torque	max .0 .8 Nm
Housing dimensions (W x H x D)	$27.2 \times 75 \times 61.2 \mathrm{~mm}$
Weight	63 g
Operating temperature range	$0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection	IP 20

Wiring

P/N	Color	Feature 1	Feature 2
110175	black	3 floors	

Matching accessory for Socket 14 poles for electronic modules

MC274-4W	106
Connecting bridge for industrial sockets	111
RC-Modul 230 V AV	111
RC-Modul 24 V AC	111
Holding bracket wire	112
Holding bracket plastic	112

Matching accessory for Socket with spring-clamp terminals

Page
MC274-4W
Connecting bridge for industrial sockets

Holding bracket wire
Holding bracket plastic

Socket 14 poles for electronic modules

14-pole relay socket for commercially available industrial relays with screw-type terminals. All metal parts are arranged under cover to protect them against contact. The relay socket matches R274. Electronic modules, such as LED or RC modules, can be plugged in the socket optionally.

- Optional bracket
- integrated quick fastening for DIN rail
- Terminal designation to EN 50022
- separate input and output

Nominal current	10 A
Nominal voltage	300 V AC
Electric strength	
Coil / contact	$2500 \mathrm{~V} / 50 \mathrm{~Hz} / 1 \mathrm{~min}$
Isolation group	VDE 0110 b C 250
Ambient temperature	$+70^{\circ} \mathrm{C}$
Protection against contact	VBG 4
Solid wire cross-section	$2 \times 2.5 \mathrm{~mm}^{2}$
Stranded wire with end sleeve	$2 \times 1.5 \mathrm{~mm}^{2}$
Screw torque	$\mathrm{max} .0 .8 \mathrm{Nm}^{2}$
Housing dimensions (W x H x D)	$27.2 \times 75 \times 42.6 \mathrm{~mm}$
Weight	56 g
Operating temperature range	$0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection	IP 20

Wiring

P/N	Color	Feature 1	Feature 2
110178	black	2 floors	

Socket with spring-clamp terminals

14-pole relay socket with spring-loaded terminals for commercially available industrial relays. All metal parts are arranged under cover to protect them against contact. The relay socket matches to industrial relay MC274. Electronic modules, such as LED or RC modules, can be plugged in the socket optionally.

- Optional bracket
- integrated quick fastening for DIN rail
- Terminal designation to EN 50022
- separate input and output

Nominal current	10 A
Nominal voltage	300 V AC
Electric strength	
Coil / contact	2500 V
Isolation group	VDE 0110 b C 250
Protection against contact	VBG 4
Solid wire	$2 \times 0.2-1.5 \mathrm{~mm}^{2}$
Stranded wire with end sleeve	$2 \times 0.2-1.5 \mathrm{~mm}^{2}$
Insulation strip length	7 mm
Pulling force (contact)	at least 35 N
Housing dimensions (W x H x D)	$31 \times 96.35 \times 42.65 \mathrm{~mm}$
Weight	88 g
Operating temperature range	$0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection	IP 20

Connecting bridge, 10 pole is matching accessory for

Page
KRA-F8/21 78
KRA-S-F8/21 78
KRA-SR-F10/21 79
KRA-SRA-F10/21 79

KRA-F10/21-21 80
KRA-S-F10/21-21 80
KMA-F8 90
KMAi-F8 90
Labeling plate Series
KRA-F8/F10 is matching
accessory for

KRA-F8/21
Page

KRA-S-F8/21
KRA-SR-F10/21
KRA-SRA-F10/21
KRA-F10/21-21
KRA-S-F10/21-21
Page9

PV10 F10

Connecting bridge, 10 pole

The connecting bridge easily connects the terminal blocks A1 and/or A2 of the coupling modules of series F8 and F10 by just plugging in, without having to wire the individual leads. The connecting bridge has 10 poles and is available with grid dimension 11.5 mm .

- Hot air tin-plated, lead-free surface
- flame retardant, self-extinguishing to UL 94V-2

Rated voltage $24 \mathrm{~V} \mathrm{AC/DC}$
Rated current 2 A
Number of poles 10
Grid dimension $\quad 11.5 \mathrm{~mm}$
Upper temperature limit $\quad 100^{\circ} \mathrm{C}$
Lower temperature limit $\quad-20^{\circ} \mathrm{C}$
Material / printed circuit board FR4

Dimensional drawing

E (

P/N	Color	Feature 1	Feature 2
110728	green		

Labeling plate Series KRA-F8/F10

The labeling plate was designed especially for coupling modules with spring-clamp terminal blocks of the series F8 and F10. Great importance was attached to an area for the device tag and one for identification.

- Material: ABS, transparent

Dimensional drawing

P/N	Color	Feature 1	Feature 2
110729	transparent		

Labeling plate Series KMA F8 is matching accessory for

Page
KMA-F8
KMAi-F8 90

Matching accessory for Connecting bridge Series KRA-M4/M6/M8

End mount

Connecting bridge Series KRA-M4/M6/M8 is matching accessory for

KRA-M4/1	Page
from 81	
KRA-M6	from 82
KRA-M8	from 85
KRA-SR-M8/21	from 86
KRA-M8/21-21	from 86

Labeling plate Series KMA F8

The labeling plate was designed especially for analog encoders with spring-clamp terminals. Great importance was attached to an area for the device tag and one for identification.

- Material: ABS, transparent

Dimensional drawing

P/N	Color	Feature 1	Feature 2
110727	transparent		

Connecting bridge Series KRA-M4/M6/M8

The connecting bridge easily connects the terminal blocks of the coupling modules of series KRA-M4/M6/M8, without having to wire them individually. The connecting bridge has 10 poles and is available with grid dimension 11.5 mm . The end mounts completely insulate the comb-type back to provide finger protection

- Mechanically polished surface
- flame retardant, self-extinguishing to UL 94V-2

Rated voltage	250 V
Rated current	10 A
Number of poles	10
Grid dimension	11.5 mm
Upper temperature limit	$100^{\circ} \mathrm{C}$
Lower temperature limit	$-40^{\circ} \mathrm{C}$
Material / jumper	$\mathrm{CuZn} 37 \mathrm{F54}$
Ingress protection	IP20

$-\left({ }^{\circ}\right.$

P/N	Color	Feature 1	Feature 2
$850349-02$	black	10 poles	

Labeling plate Series	
KRA-M4/M6/M8 is matching	
accessory for	
KRA-M4/1	Page from 81 KRA-M6
Krom 82	
KRA-M8	from 85
KRA-M8/21-21	86

End mount for connecting bridge is matching accessory for

Connecting bridge,
10 pole
108
Connecting bridge,
5 pole
111

Labeling plate Series KRA-M4/M6/M8

The labeling plate was designed especially for coupling modules with switch because the labeling cannot be attached to the coupling module due to the incorporated switch.

- Material: PA 66, flame retardant and self-extinguishing to UL-94-V2

End mount for connecting bridge

To be placed on the ends of the connecting bridge. The end mount completely insulates the comb-type back to provide finger protection.

- Material: PC Makrolon 2805 mat finish, eroded

Dimensional drawing

E($)$

P/N	Color	Feature 1	Feature 2
$820234-01-9$	white		

Dimensional drawing

P/N	Color	Feature 1	Feature 2
$820165-2$	black		

Connecting bridge for industrial sockets is matching accessory for

Page
Socket 14 poles 3 floors 106
Socket 14 poles 2 floors for electronic modules 107

Matching accessory for Connecting bridge for industrial sockets

End mount

RC module for industrial sockets is matching accessory for

	Page
RM 21-21	87
RM3-2W	88

Socket 14 poles 2 floors for electronic modules 107

RC module for industrial sockets

RC module for 230 V AC or 24 V AC to suppress interference.

- for relay modules of the RM series and 14-pole Industry sockets

7

Connecting bridge for industrial sockets

The connecting bridge easily connects the terminal blocks of the 14 -pole Industry sockets 110175 and 110178, without having to wire them individually. The connecting bridge has 5 poles and is available with grid dimension 28.1 mm . The end mounts completely insulate the comb-type back to provide finger protection.

- Mechanically polished surface
- flame retardant, self-extinguishing to UL 94V-2

Rated voltage	250 V
Rated current	10 A
Number of poles	5
Grid dimension	28.1 mm
Upper temperature limit	$100^{\circ} \mathrm{C}$
Lower temperature limit	$-40^{\circ} \mathrm{C}$
Material / jumper	$\mathrm{CuZn} \mathrm{37} \mathrm{F54}$
Ingress protection	IP20

P/N	Color	Feature 1	Feature 2
11017910	black	24 V AC	
11017905	black	230 V AC	

P/N	Color	Feature 1	Feature 2
$850349-03$	black	5 poles	

Holding Bracket Wire / Holding bracket plastic is matching accessory for

Page
Socket 14 poles 3 floors
Socket 14 poles 2 floors for electronic modules 107

Socket with spring-clamp terminals

Holding bracket wire

Metal holding bracket for securing the relay in the relay socket. It avoids that the relay gets loose due to vibrations.

Holding bracket plastic

Plastic holding bracket for securing the relay in the relay socket. It avoids that the relay gets loose due to vibrations.

P/N	Color	Feature 1	Feature 2
817133	black	Holder	Wire

P/N	Color	Feature 1	Feature 2
110189	black	Holder	Plastics

Control cabinet components | Measuring and monitoring relays
1 Measuring and monitoring relays | Fan timer 114
2 Measuring and monitoring relays | Speed Monitoring 115
3 Measuring and monitoring relays | cosPhi monitoring 117
4 Measuring and monitoring relays | Motor protecion 118
5 Measuring and monitoring relays | Level monitoring 119
6 Measuring and monitoring relays | Phase monitoring 121
7 Measuring and monitoring relays | Undervoltage monitor. 123
8 Measuring and monitoring relays | Current/Voltage monitoring 124
9 Measuring and monitoring relays |
Current Converter 125

LTRk-E12

The fan timer relay was designed especially for controlling two-level motors. Response and switch-off delay can be adjusted separately and infinitely. A two-level switch is used for activation. The motor contactors are activated by two mutually blocking outputs.
Mode of operation:

- 1. If you directly select level 2 , level 1 is first activated for the adjusted start-up time so that the fan can accelerate to nominal speed. Then level 2 is activated.
- 2. When switching from level 2 back to level 1 or switching off, a switch-off delay is activated allowing the fan to run down before level 1 is activated.
- 3. If level 1 has been activated for minimum the adjusted start-up time, it is immediately switched to level 2 . When switching from level 1 to 2 , the interruption may be max. 250 ms . If this time is exceeded, the procedure is as described under point 1 .

Operating voltage AC
Operating voltage AC/DC
Recovery time
Output / voltage
Output / max. current
Response time for level 1
Response time for level 2
Start-up delay
Switch-off delay
Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing / terminal block

230 V AC
24 V AC/DC
approx. 20 ms
Operating voltage
6 A AC1 / 1.5 A AC3
0 ms
approx. 30 ms
adjustable time of up to 30 s adjustable time of up to 60 s $22.5 \times 75 \times 95 \mathrm{~mm}$ 150 g
$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
IP40 / IP20

Wiring/Circuit diagram

P/N	Color	Feature 1	Feature 2
11028313	gray	24 V AC	
1102830530	gray	230 V AC	

Matching accessory for DRIW-E16

	Page
Two-wire sensor	115
Mounting bracket HWR	116
Mounting bracket HWF	116
Two-wire sensor is	
matching accessory for	
DRIW-E16	Page
	115

DRIW-E16

The speed and V-belt monitor is used for monitoring the rotary movement (insufficient speed) of motor and V-belt driven shafts. Inductive proximity switches are used for capturing the speed. Pulses are generated by the sensor without contact by means of driven control cams, toothed wheels, segmented discs, metal signal flags or similar. The relay is activated when the operating voltage is applied. After start-up bridging has finished, the monitoring function is started on the E1 and E2 terminals by means of the power contactor of the drive. When the drive speed falls below the switch-off speed, the relay is deactivated. The fault message of the speed or V-belt monitor is reset by means of the reset function and by switching off the operating voltage.

Operating voltage AC/DC	$24 \mathrm{~V} \mathrm{AC/DC}$
Operating voltage AC	230 V AC
Recovery time	400 ms
Type of monitoring	Low speed
Max. monitoring range	4200 pulses $/ \mathrm{min}$
Switch-off range	120 pulses $/ \mathrm{min}$
Sensor input	Two-wire
Start-up bridging	60 s
Outputs	2 changeover contacts (DPDT)
Output / switching voltage	250 V
Output / current	6 A
Output / total current	$8 \mathrm{~A} /$ across all contacts
Display	Green and red LED
Dimensions (W x H x D)	$22.5 \times 61.3 \times 60 \mathrm{~mm}$
Weight	70 g
Operating temperature range	$0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing /	$\mathrm{IP} 40 / \mathrm{IP} 20$
terminal block	
Wiring AC/DC / Wiring AC	

Wiring AC/DC / Wiring AC

A2	A2		A1	A1-A2 operating voltage 24 V ACDC E1-E2 potential free control contact B1-B2 sensor input 21-22-24 control output 1 changeover 11-12-14 switching output	N	N		L	operating voltage 230 VAC E1-E2 potential free control contact B1-B2 sensor input 11-12-14
E1	E2	B1	B2		E1	E2	B1	B2	
red/green Reset					Ored/green				
				Reset					
	21	24	22			21	24	22	22 -
	11	14	12			11	14	12	control output 1 changeover

P/N	Color	Feature 1	Feature 2
1101501322	gray	24 V AC/DC	
1101500522	gray	230 V AC	

P/N	Color	Feature 1	Feature 2
110149	silver		

Two-wire sensor

The sensor consists of a cylindrical nickel-plated metal body with M18 thread and 2 thin nuts. The cable output is located at the rear. Laterally, there is a yellow LED lighted in an attenuated state.The oscillator creates a high-frequency electromagnetic field emerging at the front of the sensor. It generates a field over the active area, which is called active pulse zone. When an electrically conductive material enters the field, it takes energy from the oscillator. This attenuates the oscillations so that they stop completely or partially. When the conductive material is removed from the active zone, the oscillator can again oscillate with its full amplitude. These two states can be evaluated electronically by the DRIW-E16.

The sensor has the following main components:

- 1. Oscillator (LC resonator)
- 2. Demodulator
- 3. Bistable amplifier
- 4. Amplifier

Wiring

Mounting bracket HWR is matching accessory for Page
DRIW-E16 115

Mounting bracket HWF ist passendes Zubehör zu

Page
DRIW-E16

Mounting bracket HWR

To fasten sensors with max. diameters of 18 mm . For universal mounting. An auxiliary cam for shafts with diameters of up to 45 mm is included in the delivery.

Principle diagram

P/N	Color	Feature 1	Feature 2
110146	silver		

P/N	Color	Feature 1	Feature 2
110151	silver		

Matching accessory for CPW-E12

Current Converter	
TAmini 50/5 A	125
Current Converter	
TAmini 100/5 A	125

Current Converter TAmini 100/5 A

CPW-E12

The cosPhi monitor is used for detecting underload. The response value and the response time can be adjusted. It can also be used in combination with a frequency converter (frequency: 2 to 200 Hz). Monitoring is accomplished by recognizing the phase shift between current and voltage. This phase angle varies depending on the motor load. The functions can be adjusted by means of bridges S1-S2-S3
S1-S2 open = relay deactivated with underload
S1-S2 bridged = relay activated with underload
S1-S3 open = with fault memory
S1-S3 bridged = without fault memory
The module can be unblocked remotely by means of a closing contact on S1-S3.
If there is a fault memory (no bridge over S1-S3), the fault message is active until it is acknowledged or the supply voltage is interrupted.

Frequency range
Input / motor voltage 230 V AC / 400 V AC
Input / current
Input / cosPhi response value
Input / response time
Output
Output / switching voltage
Output / continuous current
Output / switching frequency Display

230 V AC 2 to 200 Hz min. 0.2 A / max. 10 A 0 to 0.97 , adjustable 1 to 100 s, adjustable 1 changeover contact (SPDT) max. 250 V AC max. 4 A 1200 cycles/h Green and red LED

Dimensions (W x H x D)
Weight
$22.5 \times 75 \times 95 \mathrm{~mm}$
170 g
Storage temperature range $\quad-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Ingress protection for housing / IP40/IP20 terminal block

Wiring

TMR-E12 without error memory

The thermistor relay is used as protection relay for motors against thermal overload (inadmissible heating). This heating might be caused by mechanical overload on the shaft or when operating the motor with inadmissible voltages. A PTC thermistor is used as sensor. It should be mounted to the part of the motor that heats most in case of overload (e.g. integrated in motor winding). The device can also be used for motors with integrated thermo switch.

Variants:

- 230 V AC or $24 \mathrm{~V} \mathrm{AC/DC}$
- 1 or 2 changeover contacts (1 or 2 DPST)

Operating voltage AC	230 V AC
Operating voltage AC/DC	$24 \mathrm{~V} \mathrm{AC/DC}$
Start-up delay	100 ms
Input / thermistor voltage	12 V
Input / thermistor current	1 mA
Input / switch-on resistance	1.8 kOhm
Input / switch-off resistance	$3.0 \mathrm{kOhm},+/-5 \%$
Output / contact	1 (SPDT) or 2 (DPST)
	changeover contacts
Output / switching voltage	250 V
Output / continuous current	4 A
Mechanical endurance	1×10^{7} switching cycles
Electrical endurance	1×10^{5} switching cycles
Switching frequency	$1200 \mathrm{cycles} / \mathrm{h}$
Display	Green and red LED
Dimensions (W x H x D)	$22.5 \times 75 \times 95 \mathrm{~mm}$
Weight	150 g
Operating temperature range	$0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing /	$\mathrm{IP} 40 / \mathrm{IP} 20$
terminal block	

Wiring

A1-A2

operating voltage
230 V AC or $24 \mathrm{~V} \mathrm{AC/DC}$
P1-P2
PTC thermistor
11-12-14
output contact
1 changeover contact

P/N	Color	Feature 1	Feature 2
11031505	gray	230 V AC, 1W	W/o errror memory
1103150522	gray	230 V AC, 2W	w/o errror memory
1103151322	gray	24 V AC/DC, 2W	w/o errror memory

P/N	Color	Feature 1	Feature 2
11031605	gray	230 V AC, 1W	with errror memory
1103160522	gray	230 V AC, 2W	with errror memory
1103161322	gray	24 V AC/DC, 2W	with errror memory

Matching accessory for ENW-E12

	Page
Submersible	38,
Electrode TE1	119
Leakage sensor LKS1,	
LKS-ZD	38
Leakage sensor LKS1	120

Submersible Electrode TE1 is matching accessory for

Page

ENW-E12

ENW-E12

The level sensor monitors filling levels or leakage of all conductive, noncombustible media. The trigger can be adjusted by means of a proportional potentiometer. As monitor, the device works with an electrode (EO) and the ground connection (EM), e.g. for minimum and maximum levels, to protect submersible pumps from overflowing or running dry. If the surface of the fluid is subject to disturbance, we recommend another electrode (EU). As two-level controller, the device controls pumps or valves for automatically filling and emptying containers by means of the EO and EU electrodes and the EM ground connection. A container wall, being conductive to the medium, can also be used as ground connection. With 2 electrodes connected the contacts B2 and B3 must be connected with a bridge! Variants: 230 V AC or 24 V AC

Operating voltage	$230 \mathrm{~V} \mathrm{AC} / 24 \mathrm{~V}$ AC
Response sensitivity	5 to 50 kOhm , adjustable
Input	up to 3 electrodes
Input / electrode voltage	12 V
Output / contact	2 changeover contacts (DPDT)
Output / switching voltage	250 V
Output / continuous current	6 A
Output / total current	$8 \mathrm{~A} /$ across all contacts
Mechanical endurance	1×10^{7} switching cycles
Electrical endurance	1×10^{5} switching cycles
Switching frequency	600 cycles $/ \mathrm{h}$
Display	Green LED
Dimensions (W x H x D)	$22.5 \times 75 \times 95 \mathrm{~mm}$
Weight	300 g
Operating temperature range Storage temperature range	$0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Ingress protection for housing /	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
IP40 / IP20	
terminal block	

Wiring

P/N	Color	Feature 1	Feature 2
11030805	gray	230 V AC	
11030810	gray	24 V AC	

Submersible Electrode TE1

One-pole submersible electrode made of stainless steel in plastic housing. To monitor filling levels of conductive liquids. To be connected to the level sensor ENW-E12 P/N 110308xx. Contents of the packaging: 1 submersible electrode, 1 sleeve, 1 strain relief

Connecting cable
Submersible electrode

Dimensions (diameter x length)

H 07 RN-F $1.5 \mathrm{~mm}^{2}$ high-alloy steel, Material number 1.4104 (C12CrMoS12) $23 \mathrm{~mm} \times 130 \mathrm{~mm}$

P/N	Color	Feature 1	Feature 2
110324	silver		

Leakage sensor LKS1 is matching accessory for Seite MR-LD6 37
ENW-E12 119

Leakage sensor LKS1

Leakage sensors are connected to level sensors, such as ENW-E12 (P/N 110308 xx), to detect conductive liquids, for example, when a pipe bursts. If an electrically conductive liquid (e.g. water) comes between the two electrodes, an electrical connection is produced, which triggers an alarm in the connected level sensor ENW-E12.
Variants: Gray
Variants:

- LKS1, without wire break monitoring
- LKS-ZD, with wire break monitoring

Wire breakage monitoring unit no
Connecting cable $\quad 2 \times 0.75 \mathrm{~mm}^{2}$
Cable length 2 m
Elektrode
Dimensions (W x H x D)
Mounting
Stainless steel
$44 \times 16 \times 29 \mathrm{~mm}$
Mounting with 1 screw

Dimensional drawing

ASD-C18
Monitoring relay for monitoring asymmetry, phase failure, phase sequence errors, overvoltage and undervoltage of a three-phase connection. With external fault acknowledgement.

- Adjustable response delay
- Adjustable asymmetry
- Selectable fault memory
- 7-segment display

Operating voltage
Current consumption
Response delay
Asymmetry
Switching hysteresis
Monitoring voltage
Output contact
Max. switching voltage
Max. continuous current
Mechanical endurance
Electrical endurance

Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing terminal block

230 V AC / 50 Hz less than 15 mA 0.1 to 9.9 s , adjustable 5% to 20%, adjustable 20 \%
$3 \times 230 / 400 \mathrm{~V} \mathrm{AC}, 50 \mathrm{~Hz}$
2 changeover contacts (DPDT)
250 V AC/DC
8 A
3×10^{7} switching cycles
1×10^{5} switching cycles
$50 \times 69.3 \times 60 \mathrm{~mm}$
200 g
$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
IP40 / IP20

Wiring/Function diagram

L1 L3 		
	12	N
$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \hline 1241 \\ \hline \end{array}$		
$11-\Gamma_{14}^{12}$		
$21-5$		
14	12	11
22	21	1

L1-L2-L3

 $\stackrel{p}{\mathrm{~N}}$ connection of zero conductor 11-12-14 21-22-24 output contacts 2 changeover contacts

P/N	Color	Feature 1	Feature 2
110270	gray		

P/N	Color	Feature 1	Feature 2
110292032215	gray		

PFD3-E12
The monitoring relay monitors the correct phase sequence L1-L2-L3 (direction of rotation to the right) and complete failures of individual phase voltages.
The phase voltages to be monitored are connected to the terminals L1-L2-L3; the terminals 11, 14 or 21, 24 of the relay output contacts are connected ahead of the field coil of the motor relay.
If the phase sequence is correct, the output relay is activated (green LED is on). In case of total failure of a phase, the output relay returns to its neutral position (green LED is off).
A special supply voltage is not required for the monitoring relay. Connect the device to N . In case of total failure of N (zero conductor), the output relay returns to its neutral position (green LED is off).

Supply and measuring voltage	L1-L2-L3-N \| 400 V / 230 V
Current consumption	10 mA
Response delay	$<=1 \mathrm{~s}$
Response delay by error	$>=100 \mathrm{~ms}$
Contacts	$2 \times$ changeover contact (DPDT)
Contact material	AgNi
Switching voltage	max. 250 V
Continuous current	max. 6 A
Switching frequency	$1200 \mathrm{cycles} / \mathrm{h}$
Mechanical endurance	3×10^{7} switching cycles
Electrical endurance	1×10^{5} switching cycles
Display	Green LED
Housing Dimensions (W x H x D)	$22.5 \times 75 \times 95 \mathrm{~mm}$
Weight	120 g
Mounting acc. IEC 60715	TH 35 rail DIN
Mounting position	any
Side-by-side mounting	without space
Material Housing	Polyamid 6.6 VO
Terminal blocks	Polyamid 6.6 VO
Ingress protection for housing /	
terminal block (IEC 60529)	IP40 / IP20
Temperature range Operation	$-5{ }^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Wiring/Function diagram

L1		L3
	L2	N
14	12	11
22	21	24

L1-L2-L3
phase connections
N
connection of
zero conductor
11-12-14
$11-12-14$
$21-22-24$
output contacts
2 changeover
contacts

P/N	Color	Feature 1	Feature 2
110292032230	gray	Neutral connection	

DUW-C12

Undervoltage monitor in three-phase mains (each phase against neutral) with fixed threshold value, fixed hysteresis and integrated testing key. It has been developed especially for emergency lighting to DIN VDE 0108. The device can also be used for monitoring an individual phase. All unoccupied inputs have to be connected to the connected phase. If there is an inverse voltage due to the consumer, which exceeds the adjusted threshold value, there is not any fault message.
OK message: Relay is activated (contacts 11-14 and 21-24 closed), LED is off.
Fault message: Relay is deactivated (contacts 11-14 and 21-24 open), LED is on.
Key pressed: Relay is being deactivated (contacts 11-14 and 21-24 open), LED lights up.

Operating voltage	$3 \mathrm{~N} 400 / 230 \mathrm{~V}, 50 \mathrm{~Hz}$
Tolerance	-30% to $+10 \%$
Consumption	$16 \mathrm{VA}(1.7 \mathrm{~W})$
Recovery time	less than 300 ms
Dropout voltage	less than 85%
Trigger delay	approx. 100 ms
Threshold value	195 V AC, fixed
Hysteresis	approx. 5%, fixed
Output / Contact	2 changeover contacts
	(DPDT), potential-free
Output / switching voltage	max. $250 \mathrm{~V} \mathrm{AC/DC}$
Mechanical endurance	3×10^{7} switching cycles
Electrical endurance	1×10^{5} switching cycles
Display	Green and red LED
Dimensions (W x H x D)	$35 \times 69.3 \times 60 \mathrm{~mm}$
Weight	110 g
Operating temperature range	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing /	$\mathrm{IP40} / \mathrm{IP20}$
terminal block	

Wiring/Principle diagram

P/N	Color	Feature 1	Feature 2
110271	gray		

Matching accessory for EIW-C18

Current Converter	Page
TAmini 50/5 A	125
Current Converter	
TAmini 100/5 A	125

EIW-C18

Monitoring of direct or alternating currents in live systems. It is displayed whether the adjusted values are exceeded or not reached, and a switching process is triggered. The integrated 7 -segment display indicates the sources of the fault. The current to be measured (AC or DC), an upper and a lower threshold value, a response delay and the fault memory (ON or OFF) can be adjusted manually on the device. The two current measuring ranges can be selected by means of the terminal blocks. Faults can be acknowledged directly on the device or by means of an external contact. Variants: 230 V AC or 24 V AC

Operating voltage
Current consumption
Current measuring input B1-B3
Current measuring input B2-B3 0.1 A to 15 A
Response delay
Output
Output / switching voltage
Output / continuous current
Mechanical endurance
Electrical endurance
Display / error
Display

Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing / IP40 / IP20
terminal block

Wiring

P/N	Color	Feature 1	Feature 2
11027205	gray		

230 V AC, 50 Hz max. 15 mA
0.1 to 9.9 s, adjustable

2 changeover contacts (DPDT)
max. $250 \mathrm{~V} \mathrm{AC/DC}$
max. 8 A
3×10^{7} switching cycles
1×10^{5} switching cycles
Two 7-segment displays
Green and red LED
$50 \times 69.3 \times 60 \mathrm{~mm}$
200 g
$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
,

EUW-C18

Monitoring of direct or alternating voltages in live systems. It is displayed whether the adjusted values are exceeded or not reached, and a switching process is triggered. The integrated 7 -segment display indicates the sources of the fault. The voltage to be measured (AC or DC), two measuring ranges, an upper and a lower threshold value, a response delay and the fault memory (ON or OFF) can be adjusted manually on the device. Faults can be acknowledged directly on the device or by means of an external contact.

Wiring

P/N	Color	Feature 1	Feature 2
11027405	gray		

Operating voltage
Current consumption
Voltage measuring input B1-B3
Voltage measuring input B2 - B3
Response delay
Output / contact
Output / switching voltage
Output / continuous current
Mechanical endurance
Electrical endurance
Display / error
Display
Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
230 V AC, 50 Hz
max. 15 mA
10 V to 300 V
1 V to 100 V
0.1 to 9.9 s , adjustable

2 changeover contacts (DPDT)
max. $250 \mathrm{~V} \mathrm{AC/DC}$
max. 8 A
3×10^{7} switching cycles 1×10^{5} switching cycles Two 7-segment displays Green and red LED
$50 \times 69.3 \times 60 \mathrm{~mm}$
200 g
$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing / IP40 / IP20
terminal block

TAmini $50 \mathrm{~A} / 5 \mathrm{~A}$ is matching accessory for

Page

CPW-E12	117
EIW-C18	124

TAmini $100 \mathrm{~A} / 5 \mathrm{~A}$ is matching accessory for

Page
CPW-E12
EIW-C18

TAmini 50 A/5 A

The current converter TAmini is used for measuring currents that are beyond the measuring range of the directly connected measuring instrument.

- small current converter for mounting on 35 mm DIN rail
- Hole diameter: 21 mm ; suitable for cables and rail $20 \times 5 \mathrm{~mm}$

Transformer ratio
Nominal frequency
Operating frequency
Secondary nominal current
Max. switch-on current

Max. internal consumption Classification

```
50 A/5A
```

50 Hz
47 to 63 Hz
5 A
$60 \times$ nominal current smaller
than 1 s
less than 3 VA
UL-94 V0

Dimensions (W x H x D)
Operating temperature range
Storage temperature range
$30 \times 44 \times 65 \mathrm{~mm}$
$-25^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Wiring

TAmini 100 A / 5 A

The current converter TAmini is used for measuring currents that are beyond the measuring range of the directly connected measuring instrument.

- small current converter for mounting on 35 mm DIN rail
- Hole diameter: 21 mm ; suitable for cables and rail $20 \times 5 \mathrm{~mm}$

Transformer ratio
Nominal frequency
Operating frequency
Secondary nominal current
Max. switch-on current

Max. internal consumption Classification

Dimensions (W x H x D)
Operating temperature range
Storage temperature range
100 A / 5 A
50 Hz
47 to 63 Hz
5 A
$60 \times$ nominal current smaller
than 1 s
less than 3 VA
UL-94 V0
$30 \times 44 \times 65 \mathrm{~mm}$
$-25^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Wiring

P/N	Color	Feature 1	Feature 2
1101810507	brown	transformer ration	50 A/5 A

P/N	Color	Feature 1	Feature 2
1101810508	brown	transformer ration	100 A/5 A

[^0]
Control cabinet components | Timer relay

1 Timer relay | Multi-function1282 Timer relay | Delay on make 130
3 Timer relay \| Delay on break 131
4 Timer relay | Circuit closing, wiping 132
5 Timer relay | Clock generator 133
6 Timer relay | Flashing 134
7 Timer relay | Star-delta 135

MARk-E08

Multi-functional timer relay with incorporated coding switches to set functions. The time is set by means of a linear potentiometer on a relative scale.

Eight adjustable time ranges from 0.15 s to 10 h .
Five selectable functions

- 1. On-delayed
- 2. Off-delayed
- 3. Making-pulse interval
- 4. Flashing for pause start
- 5. Flashing for pulse start

Operating voltage AC / AC/DC
Operating voltage DC
Output / contact
Output / contact material
Output / switching voltage
Output / continuous current
Output / switching frequency
Recovery time
Mechanical endurance
Electrical endurance
Cross-section
Display
Dimensions (W x H x D)
Weight
V AC / 24 V AC/DC 24 V DC / 12 V DC 1 changeover contact (SPST) AgSnO_{2} 250 V

6 A
1200 cycles/h greater than 50 ms 1×10^{7} switching cycles
1×10^{5} switching cycles $2.5 \mathrm{~mm}^{2}$
Green and red LED
$22.5 \times 61.3 \times 60 \mathrm{~mm}$
70 g
Operating temperature range $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range $\quad-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing / IP40/IP20
terminal block

Wiring/Circuit diagram

15	16	18	B1

Caution!
Terminal B1 is
not isolated.

P/N	Color	Feature 1	Feature 2
110657	gray	5 functions	$230 \mathrm{~V} \mathrm{AC/}$ $24 \mathrm{~V} \mathrm{AC/DC}$
11065727	gray	5 functions	$24 \mathrm{~V} \mathrm{DC/}$ 12 V DC

P/N	Color	Feature 1	Feature 2
1106574133	gray	2 functions	with voltage input

MFRk-E08 / MFRk-E08 F

Multi-functional timer relay with incorporated coding switches to set functions. The time is set by means of a linear potentiometer on a relative scale.

Ten adjustable time ranges from 0.05 s to 30 h .
Six selectable functions

- 1. On-delayed
- 2. Making-pulse interval
- 3. Off-delay
- 4. Breaking-pulse interval
- 5. Flashing for pause start
- 6. Flashing for pulse start

Operating voltage
Output / contact
Output / contact material
Output / switching voltage
Output / continuous current
Output / switching frequency
Mechanical endurance
Electrical endurance
Recovery time
at 24 V AC
at 24 V DC
at 230 V AC
Cross-section
Display
Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing
terminal block

Wiring/Circuit diagram

$A 1+$	$A 3-$	$A 2$	$A 2$				
15	16	18	$B 1$				

$\mathrm{A} 1+-\mathrm{A} 2$
operating voltage
230 V AC
A1 + - A3-
operating voltage
24 V AC/DC
A1 + - B1
control contact
15-16-18
output contact
1 changeover
Caution!
Terminal B1 is
not isolated.

P/N	Color	Feature 1	Feature 2
110658	gray	recovery time tw	$50-100 \mathrm{~ms}$
110658412014	gray	recovery time tw	$10-30 \mathrm{~ms}$

230 V AC / 24 V AC/DC 1 changeover contact (SPDT)
AgSnO_{2}
250 V AC/DC
6 A
1200 cycles/h
1×10^{7} switching cycles
1×10^{5} switching cycles
MFRk-E08 / MFRk-E08 F
$60 \mathrm{~ms} / 10$ to 30 ms
$50 \mathrm{~ms} / 10$ to 30 ms $100 \mathrm{~ms} / 10$ to 30 ms
$2.5 \mathrm{~mm}^{2}$
Green and red LED $22.5 \times 61.3 \times 60 \mathrm{~mm}$
70 g
$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
IP40 / IP20

MFRk-E12

Multi-functional timer relay with incorporated coding switches to set functions. The time is set by means of a linear potentiometer on a relative scale.

Four adjustable time ranges for each device
0.15 to $800 \mathrm{~s} / 0.1 \mathrm{~min}$ to 10 h

Six selectable functions

- 1. On-delayed
- 2. Making-pulse interval
- 3. Off-delay
- 4. Breaking-pulse interval
- 5. Flashing for pause start
- 6. Flashing for pulse start

P/N	Color	Feature 1	Feature 2
110310412230	gray	Time ranges	$0.15 \mathrm{~s}-800 \mathrm{~s}$
110310412231	gray	Time ranges	$0.1 \mathrm{~min}-10 \mathrm{~h}$

Operating voltage
Output / contact
Output / contact material
Output / switching voltage
Output / continuous current
Output / switching frequency
Mechanical endurance
Electrical endurance
Recovery time

Cross-section
Display
Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing / IP40 / IP20
terminal block

Wiring/Circuit diagram

Attention!
Les bornes B1 et B2
ne sont pas libres
de potentiel.
230 V AC / 24 V AC/DC
2 changeover contacts (DPDT)
AgNi
250 V
4 A
1200 cycles/h
3×10^{7} switching cycles 2×10^{5} switching cycles greater than or equal to 250 ms
$2.5 \mathrm{~mm}^{2}$
Green and red LED
$22.5 \times 75 \times 95 \mathrm{~mm}$
150 g
$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

n

MZAk-E10

Multi-functional timer relay with incorporated coding switches to select time ranges. The time is set by means of a linear potentiometer on a relative scale.

- four adjustable time ranges from 0.15 to 800 s
- On-delayed

Operating voltage
Output / contact
Output / contact material
Output / switching voltage
Output / continuous current
Output / switching frequency
Mechanical endurance
Electrical endurance
Recovery time

Cross-section
Display
Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing /
terminal block

230 V AC / 24 V AC/DC
1 changeover contact (SPDT) AgSnO_{2}
250 V
6 A
1200 cycles/h
1×10^{7} switching cycles
1×10^{5} switching cycles
greater than or equal to 100 ms
$2.5 \mathrm{~mm}^{2}$
Green and red LED
$22.5 \times 75 \times 100 \mathrm{~mm}$
150 g
$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
IP40 / IP20

A1-A2

A2-A3
tension de service
24 V AC/DC
15-16-18
contact de sortie
1 inverseur

RTLk-E10

On-delayed timer relay with time setting. The time is set by means of a linear potentiometer on a relative scale.

- On-delayed

Operating voltage
Output / contact
Output / contact material
Output / switching voltage
Output / continuous current Output / switching frequency
Mechanical endurance
Electrical endurance
Recovery time

Cross-section
Display
Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing /
terminal block

230 V AC / 24 V AC/DC
1 changeover contact (SPDT)
AgSnO_{2}
250 V
6 A
1200 cycles/h
1×10^{7} switching cycles
1×10^{5} switching cycles
greater than or equal to 100 ms
$2.5 \mathrm{~mm}^{2}$
Green and red LED
$22.5 \times 70 \times 90 \mathrm{~mm}$
150 g
$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ IP40 / IP20

P/N	Color	Feature 1	Feature 2
110295412030	gray		

P/N	Color	Feature 1	Feature 2
110352412003	gray	Time Ranges	$0.5-10 \mathrm{~s}$
110352412004	gray	Time Ranges	$1.5-30 \mathrm{~s}$
110352412005	gray	Time Ranges	$3-60 \mathrm{~s}$
110352412006	gray	Time Ranges	$5-100 \mathrm{~s}$
110352412008	gray	Time Ranges	$15-300 \mathrm{~s}$

RKAk-E10

Off delayed timer relay with time setting. The time is set by means of a linear potentiometer on a relative scale.

- Off-delayed

Operating voltage	$230 \mathrm{~V} \mathrm{AC} / 24 \mathrm{~V} \mathrm{AC/DC}$
Output / contact	$1 \mathrm{changeover} \mathrm{contact} \mathrm{(SPDT)}$
Output / contact material	AgSnO
Output / switching voltage	250 V
Output / continuous current	6 A
Output / switching frequency	1200 cycles/h
Mechanical endurance	1×10^{7} switching cycles
Electrical endurance	1×10^{5} switching cycles
Cross-section	$2.5 \mathrm{~mm}^{2}$
Display	Green LED
Dimensions (W x H x D)	$22.5 \times 70 \times 90 \mathrm{~mm}$
Weight	150 g
Operating temperature range	$-10{ }^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing /	$\mathrm{IP} 40 / \mathrm{IP} 20$
terminal block	

Wiring/Function diagram

P/N	Color	Feature 1	Feature 2
110304412003	gray	Time Ranges	$0.5-10 \mathrm{~s}$
110304412004	gray	Time Ranges	$1.5-30 \mathrm{~s}$
110304412005	gray	Time Ranges	$3-60 \mathrm{~s}$
110304412008	gray	Time Ranges	$15-300 \mathrm{~s}$
110304412011	gray	Time Ranges	$3-60$ min

EWEk-E10

Wiping circuit-closing timer relay with time setting. The time is set by means of a linear potentiometer on a relative scale.

- Making-pulse interval
- Adjustable interval time

Operating voltage
Output / contact
Output / contact material
Output / switching voltage
Output / continuous current
Output / switching frequency
Mechanical endurance
Electrical endurance
Cross-section
Display

Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing terminal block

230 V AC / 24 V AC/DC
1 changeover contact (SPDT)
AgSnO_{2}
250 V
6 A
1200 cycles/h
1×10^{7} switching cycles
1×10^{5} switching cycles
$2.5 \mathrm{~mm}^{2}$
Green and red LED
$22.5 \times 70 \times 95 \mathrm{~mm}$
150 g
$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
IP40 / IP20

Wiring/Function diagram

A1-A2
tension de service
230 V AC
A2-A3
tension de service
24 V AC/DC
15-16-18
contact de sortie
1 inverseur

P/N	Color	Feature 1	Feature 2
110296412003	gray	Time Ranges	$0.5-10 \mathrm{~s}$
110296412004	gray	Time Ranges	$1.5-30 \mathrm{~s}$

REWk-E10

Wiping circuit-closing timer relay with factory-set interval time of 0.5 s .

Operating voltage Recovery time	230 V AC / 24 V AC/DC greater than or equal to 100 ms
Output / contact	1 changeover contact (SPDT)
Output / contact material	AgSnO_{2}
Output / switching voltage	250 V
Output / continuous current	6 A
Output / switching frequency	1200 cycles/h
Mechanical endurance	3×10^{7} switching cycles
Electrical endurance	1×10^{5} switching cycles
Cross-section	$2.5 \mathrm{~mm}^{2}$
Display	Green and red LED
Dimensions (Wx H x D	$22.5 \times 70 \times 95 \mathrm{~mm}$
Weight	150 g
Operating temperature range	$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-25^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$
Ingress protection for housing / terminal block	IP40 / IP20

Wiring/Function diagram

A1 1	A3
181	A2

A1-A2

 operating voltage 230 VACA2-A3 operating voltage
24 V ACDC
15-16-18 output contact 1 changeover

P/N	Color	Feature 1	Feature 2
110354412016	gray		

TERk-E08

Clock generator with separately adjustable delay and pulse times. The time ranges can be programmed by means of the coding switches incorporated in the front.

- Clock generating
- Adjustable time ranges

Operating voltage Recovery time	230 V AC / 24 V AC/DC greater than or equal to 50 ms
Output / contact	1 changeover contact (SPDT)
Output / contact material	AgSnO_{2}
Output / switching voltage	250 V
Output / continuous current	6 A
Output / switching frequency	1200 cycles/h
Mechanical endurance	1×10^{7} switching cycles
Electrical endurance	1×10^{5} switching cycles
Cross-section	2.5 mm ${ }^{2}$
Display	Green and red LED
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)	$22.5 \times 61.3 \times 60 \mathrm{~mm}$
Weight	70 g
Operating temperature range	$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing / terminal block	IP40 / IP20

Wiring/Function diagram

A1+ - A2

tension de service A3- - A2 pont pour tension de service 24 V 15-16-18 contact de sortie 1 inverseur

\square

P/N	Color	Feature 1	Feature 2
11067441203030	gray	tp $0.15-800 \mathrm{~s}$	ti $0.15-800 \mathrm{~s}$
11067441203031	gray	tp $0.15-800 \mathrm{~s}$	ti $0.1 \mathrm{~min}-10 \mathrm{~h}$
11067441203130	gray	tp 0.1 min - 10 h	ti 0.15-800 s
11067441203131	gray	tp 0.1 min - 10 h	ti 0.1 min - 10h

RTBk-E10

Flashing relay with factory-set fixed pause/pulse time of 0.5 s each at a 1:1 ratio.

Operating voltage Recovery time	230 V AC / 24 V AC/DC greater than or equal to 100 ms
Output / contact	1 changeover contact (SPDT)
Output / contact material	AgSnO_{2}
Output / switching voltage	250 V
Output / continuous current	6 A
Output / switching frequency	1200 cycles/h
Mechanical endurance	1×10^{7} switching cycles
Electrical endurance	1×10^{5} switching cycles
Cross-section	2.5 mm ${ }^{2}$
Display	Green and red LED
Dimensions (W x H x D	$22.5 \times 70 \times 90 \mathrm{~mm}$
Weight	150 g
Operating temperature range	$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ingress protection for housing / terminal block	IP40 / IP20

Wiring/Function diagram

P/N	Color	Feature 1	Feature 2
110355412016	gray		

RSDw-E10

Star-delta relay with adjustable switching time for switching three-phase motors. The time is set by means of a linear potentiometer on a relative scale.

- Star-delta relay
- fixed switching time of 50 ms

Operating voltage
Recovery time

Switching time
Output / contact
Output / contact material
Output / switching voltage
Output / continuous current
Output / switching frequency
Mechanical endurance
Electrical endurance
Cross-section
Display

Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing / IP40/IP20
terminal block to 250 ms
50 ms AgSnO_{2} 250 V 6 A 1200 cycles/h $2.5 \mathrm{~mm}^{2}$ Red LED 150 g $-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

230 V AC / 24 V AC/DC greater than or equal 1 changeover contact (SPDT) 1×10^{7} switching cycles 1×10^{5} switching cycles
$22.5 \times 70 \times 90 \mathrm{~mm}$

Wiring/Function diagram

A1	15	
	28	

A1-A2

operating voltage
230 VAC
A2-A3
operating voltage
24 V ACIDC
15-18
star element
15-28
delta element

RSD-E10
Star-delta relay with adjustable switching time for switching three-phase motors. The time is set by means of a linear potentiometer on a relative scale.

- Star-delta relay
- fixed switching time of 50 ms

P/N	Color	Feature 1	Feature 2
11016141280417	gray	230 V AC	$1.5-30 \mathrm{~s}$
11016141280517	gray	230 V AC	$3-60 \mathrm{~s}$

P/N	Color	Feature 1	Feature 2
11016005270317	gray	230 V AC	$0.5-10 \mathrm{~s}$
11016005270417	gray	230 V AC	$1.5-30 \mathrm{~s}$
11016005270517	gray	230 V AC	$3-60 \mathrm{~s}$
11016013270317	gray	24 V AC/DC	$0.5-10 \mathrm{~s}$

Operating voltage
Recovery time

Switching time Output / contact

Output / contact material
Output / switching voltage
Output / continuous current
Output / switching frequency
Mechanical endurance
Electrical endurance
Cross-section
Display
Dimensions (W x H x D)
Weight
Operating temperature range
Storage temperature range
Ingress protection for housing /
terminal block

230 V AC / 24 V AC/DC greater than or equal to 250 ms
50 ms 2 normally open contacts (DPST-NO)
AgSnO_{2} 250 V
6 A
1200 cycles/h
1×10^{7} switching cycles
1×10^{5} switching cycles
$2.5 \mathrm{~mm}^{2}$
Red LED
$22.5 \times 70 \times 90 \mathrm{~mm}$
150 g
$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
IP40 / IP20

A1-A2
operating voltage
15-18
star element -
1 NO contact delay on make
25-28
delta element -
1 NO contart
1 NO contact
delay on break

[^1]
Control cabinet components | Telecommunication products

1 Telecommunication products |

Power switching relay

138

2 Telecommunication products |
Secondary call signaler139

SAR 4 / SAR 5
The SAR4 and SAR5 can be connected to a telecommunications access line or separate control voltage source (AC/DC) and are activated by the call voltage or control voltage. The SAR reacts either only to the call voltage or to the control voltage. It activates an external signal emitter with its own or separate power supply (e.g. bell, horn, or lamp).

Operating voltage SAR4	$230 \mathrm{~V} \mathrm{AC} \mathrm{/} 50 \mathrm{~Hz}$
Operating voltage SAR5 DC	24 V DC / 10 mA
Operating voltage SAR5 AC	24 V AC / 10 mA
Input / a/b telecommunications access line	
Input / call voltage	32 to 80 V AC
Input / frequency range	23 to 54 Hz
Input / impedance	10 kOhm at $75 \mathrm{~V}, 25 \mathrm{~Hz}$
Input / insertion loss	less than 0.5 dB
Input / leakage resistance	more than 5 MOhm at 100 V
Input / a/c external voltage	
Input / control voltage DC	5 to 40 V
Input / control voltage AC	5 to $40 \mathrm{~V}, 50 \mathrm{~Hz}$
Input / resistance	approx. 6 kOhm
Output / switching current	max. 8 A
Output / continuous current	max. 6 A
Output / switching voltage	max. 250 V AC
Output / switching capacity	1500 VA (AC)
	30 W (less than 30 V DC)
	60 W (greater than 30 V DC)
Call interval bridging	0 to 12 s
Limitation of power-on time	0.25 to 12 s
Electrical safety	acc. to EN 60950
Dimensions (W x H x D	$35 \times 69.3 \times 60 \mathrm{~mm}$
Operating temperature range	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Dimensional drawing/Circuit diagram

P/N	Color	Feature 1	Feature 2
$130283-1$	white	SAR4	230 V AC
$130284-1$	white	SAR5	24 V AC/DC

E(9)

SAR 1

The SAR 1 is connected to a telecommunications line and controlled by the call voltage. The SAR 1 only reacts to the call voltage, not to dialing pulses (IWV). It activates an external signal emitter with its own or separate power supply (e.g. bell, horn, or lamp) by means of a contact.The incorporated switch can be used to activate and deactivate external signals.

Input / call voltage
Input / frequency range Input / impedance Input / insertion loss Input / leakage resistance Output / switching current Output / continuous current Output / switching voltage Output / switching capacity

Electrical safety

Dimensions (W x H x D)
Operating temperature range
Storage temperature range

32 to 80 V AC
23 to 54 Hz
10 kOhm at $75 \mathrm{~V}, 25 \mathrm{~Hz}$
less than 0.5 dB
more than 5 MOhm at 100 V
max. 8 A
max. 6 A
max. 250 V AC
2000 VA (AC)
30 W (less than 30 V DC)
60 W (greater than 30 V DC) acc. to EN 60950
$65 \times 80 \times 27 \mathrm{~mm}$
$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Dimensional drawing

P/N	Color	Feature 1	Feature 2
130280-I	pearl white	surface-mount / surface-mounted	

TZG WK 955 AP

The secondary call signaler allows additionally signalizing incoming calls by means of acoustic and optical signals. An incoming call is signalized simultaneously by the telephone and the secondary call signaler. The called persons are able to notice calls even if they are not close to the telephone.

- Surface-mounted termination unit
- Adjustable sound intensity and clock frequency
- Three-sound call 95 dB
- visual signal for incoming calls
- Audible signal can be deactivated if the telephone is plugged into a TAE jack

Input / call voltage	32 to 80 V AC
Input / frequency range	23 to 54 Hz
Input / impedance	10 kOhm at $75 \mathrm{~V}, 25$
Input / insertion loss	less than 0.5 dB
Input / leakage resistance	more than 5 MOhm
Output / internal	TAE-F jack
Dimensions (W x H x D)	$65 \times 80 \times 27 \mathrm{~mm}$
Operating temperature range	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

P/N	Color	Feature 1	Feature 2
130592-1	pearl white	surface-mount/ surface-mounted	

TZG WK 955 UP

The secondary call signaler allows additionally signalizing incoming calls by means of acoustic and optical signals. An incoming call is signalized simultaneously by the telephone and the secondary call signaler. The called persons are able to notice calls even if they are not close to the telephone.

- Flush-mounted termination unit
- Adjustable sound intensity and clock frequency
- Three-sound call 95 dB
- visual signal for incoming calls
- Audible signal can be deactivated if the telephone is plugged into a TAE jack

Input / call voltage Input / frequency range Input / impedance Input / insertion loss Input / leakage resistance Output / internal

Dimensions (W x H x D)
Operating temperature range
Storage temperature range

32 to 80 V AC
23 to 54 Hz
10 kOhm at $75 \mathrm{~V}, 25 \mathrm{~Hz}$
less than 0.5 dB
more than 5 MOhm at 100 V
TAE-F jack
$80.5 \times 80.5 \times 35 \mathrm{~mm}$
$5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Dimensional drawing/Wiring

P/N	Color	Feature 1	Feature 2
$130593-1$	pearl white	Flush mount	

Index

1 Index | P/N ... 142
2 Index | Product name ... 144

P/N	Product name	Page
110146	Mounting bracket HWR	116
110149	Two-wire sensor	115
110151	Mounting bracket HWF	116
110175	Socket 14 poles	106
110178	Socket 14 poles for electronic modules	107
110185	Socket with spring-clamp terminals	107
110189	Holding bracket plastic	112
110195	MOXA EtherDevice Switch EDS 205	74
110196	MOXA EtherDevice Switch 8 port	74
110208	Echelon IzoT ${ }^{\text {® }} \mathrm{CT}$ 4.1 Standard	64
110209	Echelon IzoT ${ }^{\text {® }} \mathrm{CT} 4.1$ Professional	64
110214	Echelon U10 USB Network Interface	65
110270	ASD-C18	121
110271	DUW-C12	123
110280	LTM-E16	101
110324	Submersible Electrode TE1	38
110324	Submersible Electrode TE1	119
110329	Leckage sensor LKS1, LKS-ZD	38
110329	Leckage sensor LKS1	120
110369	Terminal block for 1/O components	71
110501	PT-C12 / PTi-C12	98
110502	PT-C12 230 / PTi-C12 230	98
110518	SMM-E16	101
110520	STM-C12	102
110556	SO/M converter 4-fach	15
110561	NG4	20
110561	NG4	41
110561	NG4	51
110561	NG4	63
110561	NG4	70
110562	T/M converter	16
110628	KD-S12/11A	105
110629	KD-S12/11K	104
110639	KD-M8/4E	103
110640	KD-M8/7A	104
110641	KD-M8/7K	103
110655	KRS-E06	93
110656	KAD-C12	99
110657	MARk-E08	128
110658	MFRk-E08 / MFRk-E08 F	129
110659	KMAi-E08	91
110660	KMA-E08	91
110661	KRS-E06 H	93
110665	KRS-E08 HR3	96
110666	KRS-E08 HRP	94
110667	KRS-E06 HR	94
110672	KRS-E08 HR3	95
110673	KRS-E08 3	95
110720	PV10 F10	92
110727	Labeling plate Series KMA F8	109
110728	Connecting bridge, 10 pole	108
110729	Labeling plate Series KRA-F8/F10	108
110730	KMA-F8	90
110731	KMAi-F8	90
110904	EWIO_{2}-BM	24
110905	EWIO_{2}	24
110906	$\mathrm{EWIO}_{2}-\mathrm{W}$	25
110909	$\mathrm{EWIO}_{2}-\mathrm{W}-\mathrm{BM}$	25
110930	$\mathrm{EWIO}_{2}-\mathrm{M}$	12
110931	EWIO_{2}-MW	13
110934	EWIO ${ }_{2}-\mathrm{MW}-\mathrm{BM}$	13
110935	$\mathrm{EWIO}_{2}-\mathrm{M}-\mathrm{BM}$	12
817133	Holding bracket wire	112
11017905	RC module for industrial sockets	111
11017910	RC module for industrial sockets	111
11019601	MOXA EtherDevice Switch 8 port	74
11027205	EIW-C18	124
11027405	EUW-C18	124
11027605	RTM-C12 230 V	100
11027613	RTM-C12	100

P/N	Product name	Page
11028313	LTRk-E12	114
11030805	ENW-E12	119
11030810	ENW-E12	119
11031505	TMR-E12 without error memory	118
11031605	TMR-E12 with error memory	118
11032902	Leckage sensor LKS1, LKS-ZD	38
11043413	KRS-C12 3VHR	96
11043513	ADU-C12	99
11050108	PT-C12 / PTi-C12	98
11050208	PT-C12 230 / PTi-C12 230	98
11050705	RM21-21 24 V AC or 230 V AC	87
11050710	RM21-21 24 V AC or 230 V AC	87
11050725	RM21-21 24 V DC	87
11051005	RM3-2W 24 V AC or 230 V AC	88
11051010	RM3-2W 24 V AC or 230 V AC	88
11051025	RM3-2W 24 V DC	88
11051813	SMM-E16	101
11055601	SO/M converter double-rate	15
11056301	MYD IP65	18
11056302	MYD IP65	18
11056303	MYD-1M1V	18
11060913	KRA-S12/21-21-21	86
11061213	KRA-S-M6/21	84
11061305	KRA-M4/1, 1 normally open contact, 230 V AC	82
11061313	KRA-M4/1, 1 normally open contact, 24 V AC/DC	81
11061325	KRA-M4/1, 1 normally open contact, 24 V DC	81
11061505	KRA-M6/21, 1 changeover contact, 230 V AC	83
11061513	KRA-M6/21, 1 changeover contact, 12 or 24 V AC/DC	82
11061525	KRA-M6/21, 1 changeover contact, 24 V DC	83
11061550	KRA-M6/21, 1 changeover contact, 12 or 24 V AC/DC	82
11061905	KRA-M8/21-21, 2 changeover contact, 230 V AC	86
11061913	KRA-M8/21-21, 2 changeover contact, 12 V or $24 \mathrm{~V} \mathrm{AC/DC}$	85
11061925	KRA-M8/21-21, 2 changeover contact, 24 V DC	85
11061950	KRA-M8/21-21, 2 changeover contact, 12 V or 24 V AC/DC	85
11064513	KRA-SR-M8/21	84
11065727	MARk-E08	128
11066001	KMA-E08	91
11070013	KRA-F8/21	78
11070213	KRA-F10/21-21	80
11070613	KRA-S-F8/21	78
11070713	KRA-S-F10/21-21	80
11070813	KRA-SR-F10/21	79
11071013	KRA-SRA-F10/21	79
11073001	KMA-F8	90
11080001	BACnet IP / BACnet MS/TP Router	50
11080101	USB/RS485 converter	39
11083013	MR-TO4	32
11083213	MR-AI8	29
11083813	MR-TP	36
11083913	MR-SI4	28
11084113	MR-SM3	30
11084313	MR-Multi-/O	34
11084413	MR-LD6	37
11085313	LF-Al8	55
11085413	LF-AOP4	58
11085713	LF-AM2/4	59
11085813	LF-SI4	54
11085913	LF-TP	60
11086213	LF-TO4	57
11086313	LF-DI230	53
11087913	LF-FAM	62
11088013	BMT-TO4	45
11088213	BMT-AI8	44
11088813	BMT-TP	49
11088913	BMT-SI4	43
11089313	BMT-Multi-//O	47
11094830	WLAN / UMTS antenna	14
31135104	Jumper plug for I/O components	71
1101500522	DRIW-E16	115
1101501322	DRIW-E16	115

P/N	Product name	Page
1101810507	TAmini $50 \mathrm{~A} / 5 \mathrm{~A}$	125
1101810508	TAmini $100 \mathrm{~A} / 5 \mathrm{~A}$	125
1102810520	CPW-E12	125
1102830530	LTRk-E12	125
1103150522	TMR-E12 without error memory	118
1103151322	TMR-E12 without error memory	118
1103160522	TMR-E12 with error memory	118
1103161322	TMR-E12 with error memory	118
1105701321	FRAS 4/21	68
1105731302	FAA 4	69
1105741306	FAE 4	67
1105751319	FDE 4	66
1106302517	KRE-M4/1 DC	89
1106312518	KRE-M4/1 AC	89
1106574133	MARk-E08 U	128
1108311319	MR-DI10	27
1108331326	MR-DIO4/2	35
1108341319	MR-DI4	26
1108351302	MR-AO4	33
1108361321	MR-DO4	31
1108371302	MR-AOP4	33
1108401332	MR-C14	29
1108501319	LF-DI4	52
1108511319	LF-DI10	52
1108521321	LF-DO4	56
1108551326	LF-DIO4/2	61
1108561326	LF-DM4/4	60
1108601332	LF-CI4	55
1108811319	BMT-DI10	43
1108831326	BMT-DIO4/2	47
1108841319	BMT-DI4	42
1108851302	BMT-AO4	46
1108861321	BMT-DO4	45
1108871302	BMT-AOP4	46
1108901332	BMT-CI4	44
110017051407	MC274-4W	106
110017101407	MC274-4W	106
110017251407	MC274-4W	106
11016005270317	RSD-E10	135
11016005270417	RSD-E10	135
11016005270517	RSD-E10	135
11016013270317	RSD-E10	135
11016141280417	RSDw-E10	135
11016141280517	RSDW-E10	135
110281052013	CPW-E12	117
110292032215	PFD2-E12	121
110292032230	PFD3-E12	122
110295412030	MZAk-E10	130
110296412003	EWEk-E10	132
110296412004	EWEk-E10	132
110304412003	RKAk-E10	131
110304412004	RKAk-E10	131
110304412005	RKAk-E10	131
110304412008	RKAk-E10	131
110304412011	RKAk-E10	131
110310412230	MFRk-E12	129
110310412231	MFRk-E12	129
110352412003	RTLk-E10	130
110352412004	RTLk-E10	130
110352412005	RTLk-E10	130
110352412006	RTLk-E10	130
110352412008	RTLk-E10	130
110354412016	REWk-E10	132
110355412016	RTBk-E10	134
11055601IP	S0/M converter-IP65	16
110562IP	T/M converter-IP65	17
110658412014	MFRk-E08 / MFRk-E08 F	129
110668132722	KRZ-E08 HR	97
11067441203030	TERk-E08	133
11067441203031	TERk-E08	133

P/N	Product name	Page
11067441203130	TERk-E08	133
11067441203131	TERk-E08	133
110676132722	KRZ-E08 HR	97
1108330526 IP	MR-DIO4/2-IP65 230 V	36
110833132601	MR-DIO4/2	35
1108331326 IP	MR-DIO4/2-IP65	35
110834131901 IP	MR-DI4-IP65 with external display	27
1108341319 P	MR-DI4-IP65	31
110836132101	MR-DOA4	34
11084213 IP	MR-AIO4/2-IP65	53
1108511319 IP	LF-DI10-IP65	56
1108521321 IP	LF-DO4-IP65	58
11085413 IP	LF-AO4-IP65	61
$1108551326 I P$	LF-DIO4/2-IP65	59
$11086105 I P$	LF-TI-IP65	48
$1108830526 I P$	BMT-DIO4/2-IP 230 V	48
$1108831326 I P$	BMT-DIO4/2-IP65	42
$1108841319 I P$	BMT-DI4-IP65	138
$130280-I$	SAR 1	138
$130283-I$	SAR 4/ SAR 5	138
$130284-I$	SAR 4/ SAR 5	139
$130592-I$	TZG WK 955 AP	139
$130593-I$	TZG WK 955 UP	110
$820165-2$	End mount for connecting bridge	110
$820234-01-9$	Labeling plate Series KRA-M4/M6/M8	109
$850349-02$	Connecting bridge Series KRA-M4/M6/M8	111
$850349-03$	Connecting bridge for industrial sockets	19
metz-connect.com	M-Bus CT software	40
metz-connect.com	Modbus configuration tool	

Product name	P/N	Page
ADU-C12	11043513	99
ASD-C18	110270	121
BACnet IP / BACnet MS/TP Router	11080001	50
BMT-AI8	11088213	44
BMT-AO4	1108851302	46
BMT-AOP4	1108871302	46
BMT-CI4	1108901332	44
BMT-DI10	1108811319	43
BMT-DI4	1108841319	42
BMT-DI4-IP65	11088413191P	42
BMT-DIO4/2	1108831326	47
BMT-DIO4/2-IP 230 V	1108830526IP	48
BMT-DIO4/2-IP65	1108831326IP	48
BMT-DO4	1108861321	45
BMT-Multi-I/O	11089313	47
BMT-SI4	11088913	43
BMT-TO4	11088013	45
BMT-TP	11088813	49
Connecting bridge for industrial sockets	850349-03	111
Connecting bridge Series KRA-M4/M6/M8	850349-02	109
Connecting bridge, 10 pole	110728	108
CPW-E12	1102810520	125
CPW-E12	110281052013	117
DRIW-E16	1101500522	115
DRIW-E16	1101501322	115
DUW-C12	110271	123
Echelon IzoT® CT 4.1 Professional	110209	64
Echelon IzoT® CT 4.1 Standard	110208	64
Echelon U10 USB Network Interface	110214	65
EIW-C18	11027205	124
End mount for connecting bridge	820165-2	110
ENW-E12	11030805	119
ENW-E12	11030810	119
EUW-C18	11027405	124
EWEk-E10	110296412003	132
EWEk-E10	110296412004	132
EWIO_{2}	110905	24
$\mathrm{EWIO}_{2}-\mathrm{BM}$	110904	24
$\mathrm{EWIO}_{2}-\mathrm{M}$	110930	12
EWIO_{2}-MW	110931	13
EWIO_{2}-MW-BM	110934	13
$\mathrm{EWIO}_{2}-\mathrm{W}$	110906	25
$\mathrm{EWIO}_{2}-\mathrm{W}-\mathrm{BM}$	110909	25
FAA 4	1105731302	69
FAE 4	1105741306	67
FDE 4	1105751319	66
FRAS 4/21	1105701321	68
Holding bracket plastic	110189	112
Holding bracket wire	817133	112
Jumper plug for I/O components	31135104	71
KAD-C12	110656	99
KD-M8/4E	110639	103
KD-M8/7A	110640	104
KD-M8/7K	110641	103
KD-S12/11A	110628	105
KD-S12/11K	110629	104
KMA-E08	110660	91
KMA-E08	11066001	91
KMA-F8	11073001	90
KMAi-E08	110659	91
KMAi-F8	110731	90
KRA-F10/21-21	11070213	80
KRA-F8/21	11070013	78
KRA-M4/1, 1 normally open contact, 230 V AC	11061305	82
KRA-M4/1, 1 normally open contact, 24 V AC/DC	11061313	81
KRA-M4/1, 1 normally open contact, 24 V DC	11061325	81
KRA-M6/21, 1 changeover contact, 12 or 24 V AC/DC	11061513	82
KRA-M6/21, 1 changeover contact, 12 or 24 V AC/DC	11061550	82
KRA-M6/21, 1 changeover contact, 230 V AC	11061505	83
KRA-M6/21, 1 changeover contact, 24 V DC	11061525	83

Product name	P/N	Page
KRA-M8/21-21, 2 changeover contact, 12V or 24 V AC/DC	11061913	85
KRA-M8/21-21, 2 changeover contact, 12 V or 24 V AC/DC	11061950	85
KRA-M8/21-21, 2 changeover contact, 230 V AC	11061905	86
KRA-M8/21-21, 2 changeover contact, 24 V DC	11061925	85
KRA-S12/21-21-21	11060913	86
KRA-S-F10/21-21	11070713	80
KRA-S-F8/21	11070613	78
KRA-S-M6/21	11061213	84
KRA-SRA-F10/21	11071013	79
KRA-SR-F10/21	11070813	79
KRA-SR-M8/21	11064513	84
KRE-M4/1 AC	1106312518	89
KRE-M4/1 DC	1106302517	89
KRS-C12 3VHR	11043413	96
KRS-E06	110655	93
KRS-E06 H	110661	93
KRS-E06 HR	110667	94
KRS-E08 3	110673	95
KRS-E08 HR3	110665	96
KRS-E08 HR3	110672	95
KRS-E08 HRP	110666	94
KRZ-E08 HR	110668132722	97
KRZ-E08 HR	110676132722	97
Labeling plate Series KMA F8	110727	109
Labeling plate Series KRA-F8/F10	110729	108
Labeling plate Series KRA-M4/M6/M8	820234-01-9	110
Leckage sensor LKS1	110329	120
Leckage sensor LKS1, LKS-ZD	110329	38
Leckage sensor LKS1, LKS-ZD	11032902	38
LF-Al8	11085313	55
LF-AM2/4	11085713	59
LF-AO4-IP65	11085413IP	58
LF-AOP4	11085413	58
LF-Cl4	1108601332	55
LF-DI10	1108511319	52
LF-DI10-IP65	1108511319IP	53
LF-DI230	11086313	53
LF-DI4	1108501319	52
LF-DIO4/2	1108551326	61
LF-DIO4/2-IP65	1108551326IP	61
LF-DM4/4	1108561326	60
LF-DO4	1108521321	56
LF-DO4-IP65	1108521321IP	56
LF-FAM	11087913	62
LF-SI4	11085813	54
LF-TI-IP65	11086105IP	59
LF-TO4	11086213	57
LF-TP	11085913	60
LTM-E16	110280	101
LTRk-E12	11028313	114
LTRk-E12	1102830530	125
MARk-E08	110657	128
MARk-E08	11065727	128
MARk-E08 U	1106574133	128
M-Bus CT software	metz-connect.com	19
MC274-4W	110017051407	106
MC274-4W	110017101407	106
MC274-4W	110017251407	106
MFRk-E08 / MFRk-E08 F	110310412230	129
MFRk-E08 / MFRk-E08 F	110658412014	129
MFRk-E12	1106574133	129
MFRk-E12	110310412231	129
Modbus configuration tool	metz-connect.com	40
Mounting bracket HWR	110146	116
Mounting bracket HWF	110151	116
MOXA EtherDevice Switch 8 port	110196	74
MOXA EtherDevice Switch 8 port	11019601	74
MOXA EtherDevice Switch EDS 205	110195	74
MR-AI8	11083213	29
MR-AIO4/2-IP65	11084213IP	34

connect

Product name	P/N	Page
MR-AO4	1108351302	33
MR-AOP4	1108371302	33
MR-CI4	1108401332	29
MR-DI10	1108311319	27
MR-DI4	1108341319	26
MR-DI4-IP65	11083413191P	26
MR-DI4-IP65 with external display	110834131901IP	27
MR-DIO4/2	1108331326	35
MR-DIO4/2	110833132601	35
MR-DIO4/2-IP65	1108331326IP	35
MR-DIO4/2-IP65 230 V	1108330526IP	36
MR-DO4	1108361321	31
MR-DOA4	110836132101	31
MR-LD6	11084413	37
MR-Multi-1/O	11084313	34
MR-SM3	11084113	30
MR-TO4	11083013	32
MR-TP	11083813	36
MYD IP65	11056301	18
MYD IP65	11056302	18
MYD-1M1V	11056303	18
MZAk-E10	110295412030	130
NG4	110561	20
NG4	110561	41
NG4	110561	51
NG4	110561	63
NG4	110561	70
PFD2-E12	110292032215	121
PFD3-E12	110292032230	122
PT-C12 / PTi-C12	110501	98
PT-C12 / PTi-C12	11050108	98
PT-C12 230 / PTi-C12 230	110502	98
PT-C12 230 / PTi-C12 230	11050208	98
PV10 F10	110720	92
RC module for industrial sockets	11017905	111
RC module for industrial sockets	11017910	111
REWk-E10	110354412016	132
RKAk-E10	110304412003	131
RKAk-E10	110304412004	131
RKAk-E10	110304412005	131
RKAk-E10	110304412008	131
RKAk-E10	110304412011	131
RM21-21 24 V AC or 230 V AC	11050705	87
RM21-21 24 V AC or 230 V AC	11050710	87
RM21-21 24 V DC	11050725	87
RM3-2W 24 V AC or 230 V AC	11051005	88
RM3-2W 24 V AC or 230 V AC	11051010	88
RM3-2W 24 V DC	11051025	88
RSD-E10	11016005270317	135
RSD-E10	11016005270417	135
RSD-E10	11016005270517	135
RSD-E10	11016013270317	135
RSDw-E10	11016141280417	135
RSDW-E10	11016141280517	135
RTBk-E10	110355412016	134
RTLk-E10	110352412003	130
RTLk-E10	110352412004	130
RTLk-E10	110352412005	130
RTLk-E10	110352412006	130
RTLk-E10	110352412008	130
RTM-C12	11027613	100
RTM-C12 230 V	11027605	100
S0/M converter 4-fach	110556	15
SO/M converter double-rate	11055601	15
S0/M converter-IP65	11055601IP	16
SAR 1	130280-1	138
SAR 4/ SAR 5	130283-1	138
SAR 4 / SAR 5	130284-\|	138
SMM-E16	110518	101
SMM-E16	11051813	101

Product name	P/N	Page
Socket 14 poles	110175	106
Socket 14 poles for electronic modules	110178	107
Socket with spring-clamp terminals	110185	107
STM-C12	110520	102
Submersible Electrode TE1	110324	38
Submersible Electrode TE1	110324	119
T/M converter	110562	16
T/M converter-IP65	1105621 I	17
TAmini 100 A / 5 A	1101810508	125
TAmini 50 A / 5 A	1101810507	125
TERk-E08	11067441203030	133
TERk-E08	11067441203031	133
TERk-E08	11067441203130	133
TERk-E08	11067441203131	133
Terminal block for I/O components	110369	71
TMR-E12 with error memory	11031605	118
TMR-E12 with error memory	1103160522	118
TMR-E12 with error memory	1103161322	118
TMR-E12 without error memory	11031505	118
TMR-E12 without error memory	1103150522	118
TMR-E12 without error memory	1103151322	118
Two-wire sensor	110149	115
TZG WK 955 AP	$130592-1$	139
TZG WK 955 UP	$130593-1$	139
USB/RS485 converter	11080101	39
WLAN / UMTS antenna	11094830	14

Contact

1 METZ CONNECT worldwide................................... 148
2 Contact.. 149
3 General Information ... 149
4 General Terms and Conditions (GTC)................... 150

METZ CONNECT worldwide

SALES OFFICES

METZ CONNECT
USA Inc.
200 Tornillo Way
Tinton Falls, NJ 07712
USA
Phone + 17323891300
Fax +17323899066
www.metz-connect.com

METZ CONNECT

France SAS

28, Rue Schweighaeuser 67000 Strasbourg
France
Phone + 33388617073
Fax +33 388619473
www.metz-connect.com

METZ CONNECT GmbH

Im Tal 2
78176 Blumberg
Germany
Phone + 497702 533-0
Fax +497702533-189
www.metz-connect.com

METZ CONNECT
Zhongshan Ltd.
Ping Chang Road
Ping Pu Industrial Park
Sanxiang Town
Zhongshan City, 528463
Guangdong Province China
Phone +8676086365055
Fax +8676086365050
www.metz-connect.com

METZ CONNECT
Asia Pacific Limited
Suite 1803, 18/F,
Chinachem
Hollywood Centre 1 Hollywood Road Central
Hong Kong
Phone + 85226027300
Fax + 85227257522
www.metz-connect.com

PRODUCTION SITES

MCQ TECH GmbH
Ottilienweg 9
78176 Blumberg
Germany
Phone +497702 533-0
Fax +497702 533-433
www.metz-connect.com

MC Termelő Kft.
Vásár tér 16/A
6090 Kunszentmiklós
Hungary
Phone +36 76350524

METZ CONNECT
Zhongshan Ltd.
Ping Chang Road
Ping Pu Industrial Park
Sanxiang Town
Zhongshan City, 528463
Guangdong Province
China

Phone + 8676086365055 Fax +8676086365050 www.metz-connect.com

Contact

Contacts

You will find your responsible contacts for your sector in your region at our website: http://www.metz-connect.com/en/contact-search

Please note

General Information

All the information, descriptions and illustrations given in this catalog are non-binding.
It does in no way entitle to deduce warranty claims.
Subject to change without prior notice.

No liability accepted for printing errors.
© METZ CONNECT GmbH, Im Tal 2, 78176 Blumberg, Germany

All rights reserved, especially the right of reproduction and translation. Reproduction or electronic storage, processing, copying and publication of any part of this document is subject to prior approval by METZ CONNECT GmbH.

General Terms and Conditions (GTC)

of METZ CONNECT GmbH | Im Tal 2 | 78176 Blumberg | Germany
Managing Director: Jochen Metz
registered at the Freiburg Register Court in Breisgau under HRB [Commercial Register Department B] 611606

I. Application, validity

1.1 The following General Terms and Conditions apply to all transactions and deliveries between us and companies (Section 14 BGB) as well as with legal persons under public law and special funds under public law.
1.2 We do not recognise the general terms and conditions of the customer unless we have expressly agreed to their validity. Our terms and conditions also apply exclusively if we perform the delivery to the customer without reference to these terms and conditions, despite being aware of terms and conditions of the customer that conflict with or deviate from our terms and conditions.

II. Contract conclusion, scope of delivery

2.1 We are entitled, without giving any reason, to revoke our offers until receipt of the declaration of acceptance (offers are non-binding). We can accept orders of the customer (offer within the meaning of Sections 145 et seqq. BGB [German Civil Code]) within two weeks.
2.2 If we do not respond to the customer's order by providing the customer with an order confirmation, the order will be accepted by transmitting the delivery and/or delivery note.
2.3 The customer has to check all of its dimension and product specifications. We are not obliged to check the dimensions, product data or specifications provided by the customer. When using our products with other components (e.g. connectors to our modules), the customer is responsible for verifying the usability of the components which the customer uses for our product as well as for complying with national and EU standards and guidelines.

III. Delivery time, force majeure, transfer of risk

3.1 Only agreed delivery times are binding. An agreed delivery period begins upon receipt of the order confirmation or the commercial confirmation letter, etc., but not prior to the provision of any documents, approvals or releases which might have to be procured by the customer prior to the provision of the supply or before the receipt of an agreed down payment or required advance payment. The delivery deadline is met if the readiness for dispatch (non-loaded provision) has been prepared and communicated to the customer by the respective expiry date and time; this only applies in the case of delivery EXW Blumberg, Incoterms 2010.
3.2 In the event of force majeure, the agreed delivery times shall be extended appropriately. If the force majeure lasts longer than six weeks, both parties are entitled to withdraw from the contract after setting a further deadline of two weeks. Force majeure is an external event caused by elementary forces of nature or by actions of third parties, which is unforeseeable according to human insight and experience, and cannot be prevented or rendered harmless by economically acceptable means by the utmost care reasonably expected under the circumstances and cannot be accepted due to its frequency. This also includes fault-free interruptions in operation, such as strikes, lockouts as well as delays in delivery that are not caused by us.
3.3 Unless agreed otherwise, deliveries are performed ex works Blumberg, Germany (EXW Blumberg, Incoterms 2010). Unless contractually deviating from the EXW Incoterm clause, the risk for the respective delivery is transferred to the customer if the delivery (packaged goods) has been unloaded and made available to the customer in the Blumberg factory and the customer has been informed thereof in advance in good time. If the provision of the goods to the carrier or customer is delayed at the request of the customer or for other reasons for which we are not responsible or if the customer is in default of acceptance, the risk passes to the customer upon notification of the readiness for shipment or for collection. From that point on, the goods are stored at the expense and risk of the customer.
3.4 Partial deliveries and partial services are permissible insofar as they are reasonable for the customer. They are considered as independent deliveries and can be billed immediately.
3.5 For custom-made products, we reserve the right to over- or under-deliveries of up to 10% of the ordered and/or order-confirmed delivery quantities.

IV. Prices, payments

4.1 Unless otherwise agreed, our prices are ex works Blumberg in Euro plus VAT in the respective statutory amount.
4.2 If we agree to cancellations due to reasons of goodwill, the costs incurred by us as well as any additional costs are borne by the customer. The same applies to a change of contracts as initiated by the customer, provided that we agree to these changes out of goodwill.
4.3 Unless otherwise agreed, the payments are to be made net within 30 days of the invoice date, provided that the customer has received the goods and the invoice within 10 days of the date which follows the invoice date.
4.4 The customer is not entitled to withhold payments or offset them with counterclaims if these do not result from the same contractual relationship and are subject to deficiency. Moreover, offsetting is only permissible with legally determined, recognised or undisputed counterclaims.

V. Reservation of proprietary rights

5.1 The delivered goods remain our property until full payment of the purchase price and all claims from the entire business relationship, regardless of which type. Ownership of the property is only transferred once all claims, including all ancillary claims, have been settled. The customer is not entitled to pledge the goods or assign them as security.
5.2 If the customer defaults on the payment of a considerable amount of claims arising from the entire business condition, we are entitled to reclaim the reserved goods. The request for release implies a withdrawal from the contract. In such cases, it is not necessary to set a performance period. The assertion of damages remains reserved even in the case of a withdrawal from the contract.
5.3 The customer is entitled to resell the goods only in the ordinary course of business and under the condition of a reservation by the customer that the ownership only passes to the customer's purchaser if the latter has completely fulfilled its payment obligations in respect of the reserved goods. The customer hereby assigns to us the claim that results from the resale of the goods in the amount of our final invoice amount, including VAT; the customer is moreover obliged to provide us, upon request, with the name and address of the third party debtors as well as the amounts of the claims. The claim from any resale of our goods may not be assigned to third parties, including banks.
5.4 The customer is authorised to collect assigned claims. The collection authorisation expires in the case of a default in payment. In such cases, we are entitled to inform the customers' purchaser of the assignment as well as to collect the claims ourselves. For the assertion of the assigned claims, the customer has to provide the necessary information and to allow the verification of this information. In particular, upon request of a detailed list of the receivables arising from the resale of our goods, the customer has to provide us with the name and address of the purchaser, the amount of the individual claims, the invoice date, etc. as well as to allow access to the customer's business premises for the sake of verification.
5.5 If the reserved goods are connected, mixed or processed by the customer to a new item, this occurs for us without our being obliged in this regard. The connection, mixing and processing does not result in the customer acquiring sole ownership in the new product pursuant to Sections 947 et seqq. BGB. Rather, we acquire co-ownership of the new product according to the ratio of the invoice value of our reserved goods to the total value.
5.6 The customer undertakes to notify us immediately in the event of seizure, the suspension of payments or the substantial deterioration of its financial circumstances. Garnishers are to be specified, including a statement of their addresses. The customer bears all costs for the revocation of the access of garnishers to our goods as well as for the replacement of the respective goods.
5.7 The customer is obliged to ensure any unpaid goods against damage, particularly vandalism, theft, transport damage, fire, water and breakage. The customer agrees to tell us the name of the respective damage insurer and hereby conditionally assigns to us the customer's claim towards the respective insurer for any unpaid goods through the commencement of the insurance case on account of performance.
5.8 The customer shall hold the reserved goods for us free of charge; the customer is not entitled to justify a warehouseman's lien.
5.9 If, in the case of export deliveries, the above reservation of title pursuant to the law of the country of importation is not effective or needs to be supplemented and/or registered in order to be effective, the customer shall be obliged, as justified, to conclude a security agreement (pursuant to the law of the country of importation) which comes closest to the economic purpose of our purchase price security, as well as to perform the necessary registration.

VI. Obligation to examine and to provide notice of defects, guarantee, liability

6.1 Customer's obligation to examine, provide notice of defects and take precautionary measures
6.1.1 The customer has to inspect the delivered goods and to provide notification of any apparent defects or quantity deviations (hereafter uniformly: defects) immediately, but no later than within seven days after receipt of the goods. Notification of any unrecognisable defects is also to take place immediate upon discovery, but no later than seven days after they have been discovered. The notice period applies likewise for direct deliveries to third parties designated by the customer; in such cases, the customer also has to ensure a timely notification of any complaints.
6.1.2 If purchasers of the customer provide notifications of defects to the customer, the customer has to forward these complaints to us immediately. The customer undertakes that supplementary performance towards its purchasers or authorised purchasers from the supply chain shall only occur in coordination with us concerning the respective technical and economic measures.

General Terms and Conditions (GTC)

of METZ CONNECT GmbH | Im Tal 2 | 78176 Blumberg | Germany
Managing Director: Jochen Metz
registered at the Freiburg Register Court in Breisgau under HRB [Commercial Register Department B] 611606

6.1.3 If the customer intends to install, affix or further process the goods which are supplied by us, the customer has to inspect the goods prior to said installing, affixing or further processing. If the customer fails to do so, it acts negligently pursuant to Section 439 para. 3, Sections 442 para. 1 sentence 2 BGB. In such a case, the customer is only entitled to warranty claims if we have deliberately caused or fraudulently concealed the defect or if a guarantee in terms of quality has been accepted.
6.1.4 If the customer identifies defects in the goods, the customer undertakes not to resell, process, install or affix the respective goods until an agreement has been reached concerning the settlement of the warranty case or until a judicial or extrajudicial preservation of evidence has been performed. The customer is obliged to provide us with the rejected goods for the purpose of checking whether a warranty claim exists. If the customer culpably refuses to do so, any and all warranty claims are void.
6.2 Warranty
6.2.1 In the case of insignificant defects, the customer is not entitled to damages in place of full performance and has no right to withdraw.
6.2.2 If the final purchaser in the supply chain is not a consumer and if the customer's purchaser asserts claims for defects, the customer has, in deviation from Section 445 a para. 2 BGB, to set a reasonable deadline for supplementary performance before being entitled to assert the other rights described in Section 437 BGB instead of the subsequent fulfilment (right of second delivery). The customer reserves the right to second delivery vis-à-vis the customer's purchaser provided that this purchaser is not a consumer. In cases in which we are entitled to a second delivery, we are entitled and obliged, at our discretion and within a reasonable period, to perform repair or re-deliver (free of charge) up to three times (subsequent performance), as long as the defect occurs within the limitation period and notification thereof is provided immediately upon its being recognised, provided that the cause of the defect was already present at the time of transfer of risk. The customer is required to provide evidence in this regard. If the supplementary performance fails, the customer can withdraw from the contract or reduce the remuneration without prejudice to any claims for damages according to Item 6.
6.2.3 If the customer has installed a defective product or attached it to another item pursuant to the product's type and intended use, the following applies:
a) The customer has to give us the opportunity to remove the defective goods and to install or affix the repaired or newly delivered goods. This does not apply in cases in which the customer's purchaser refuses this procedure (a fact of which the customer has to notify us) or cases in which the customer's purchaser is a consumer.
b) If we are obliged to pay for removal and installation costs pursuant to Section 439 para. 3 BGB, we are only responsible for those costs relating to the removal, installation and/or affixing of corresponding goods that are customary in the marketplace and which have been verified by the customer through the submission of appropriate documents. A right by the customer to advanced payment for removal and installation costs or the affixing of identical goods is excluded unless the customer's purchaser is a consumer that requires advanced payment from the customer.
6.2.4 Claims for defects expire one year from the date of delivery in accordance with Item 3.3. This does not apply if the law requires longer periods pursuant to Section 439 para. 1 No. 2 BGB (buildings and property for buildings), Section 438 para. 3 BGB (malicious concealment), Section 445 b para. 1 BGB (right of recourse), Section 476 para. 2 BGB (reduction of the limitation period if the end user is a consumer) and Section 634a para. 1 No. 2 BGB (construction defects). The statutory provisions concerning the expiry suspension, suspension and recommencement of the periods remain unaffected thereby.
6.2.5 For damages claims due to defects, item 6.3 applies. The customer is not entitled to any warranty claims concerning the regulated claims in items 6.1, 6.2 in conjunction with item 6.3.
6.2.6 If the customer is responsible for unjustifiable providing us with a notification of defects, we are entitled to demand that the customer pay us compensation for incurred expenses as well as for other damages.
6.3 Liability
6.3.1 Irrespective of the legal grounds, damage claims by the customer, particularly due to a breach of obligations arising from the contractual relationship and from tort, are excluded subject to the following provisions.
6.3.2 The exclusion of liability pursuant to Item 6.3.1 does not apply

- to the intentional or grossly negligent breach of duty by either oneself, representatives or vicarious agents,
- to the breach of essential contractual obligations, with contractual obligations being deemed to be essential if their fulfilment is made possible in the first place by the proper execution of the contract, and upon the compliance of which the customer may regularly rely,
- if, in the case of a breach of other duties within the meaning of Section 241 para. 2 BGB (obligation to take due consideration), the customer no longer expects our services,
- in the event of an injury to life, limb or health,
- pursuant to the Product Liability Act, or
- pursuant to any other mandatory statutory liability.
6.3.3 In the case of liability for a breach of essential contractual obligations as well as initial impossibility and in the case of mandatory liability for legal defects, we are liable (when only slight negligence exists) solely for the contractually typical and predictable average loss. This does not apply in cases of a simultaneous injury to life, limb or health or to product liability cases.
6.3.4 Except for cases of injury to life, limb or health, intent, gross negligence or product liability as well as other mandatory statutory liability regulations, our liability is limited in total to the coverage of our public liability insurance, provided that there is coverage in the scope that is usual in the industry.
6.3.5 The above exclusions or limitations of liability apply to the same extent in favour of the executive and non-executive employees as well as in the case of liability for our vicarious agents.
6.3.6 Claims of the customers for damage compensation can only be asserted within a limitation period of one year from the beginning of the statutory limitation period. Claims for damages due to material defects (Item 6.1) are statute-barred pursuant to Item 6.2.4.
The above exclusion period and limitation period reduction do not apply if we are liable for intent or gross negligence or for injury to life, body or health, pursuant to the Product Liability Act or other mandatory, statutory facts of liability.
6.3.7. If our goods are exported by the customer and processed, as well as in the case of the use of components, installation or attachment abroad, we are not liable for the exportability of the goods, particularly not for obstacles such as export control regulations, embargoes, state approval or import freedom in the export countries of the customer. Compliance with the national regulations of the respective exporting country is subject to the examination and responsibility of the customer.
6.3.8 The above exclusions and limitations of liability apply to the same extent for violations of data protection regulations, particularly according to the General Data Protection Regulation (GDPR). This does not apply in cases of a violation of the prohibition on the processing of personal data within the meaning of para. 9 GDPR.
6.3.9 A change in the burden of proof to the detriment of the customer is not connected with the regulations in this Item 6.3.

VII. Acceptance of a guarantee

7.1 In principle, we do not assume any guarantees, including those regarding quality or durability. In particular, quality provisions, performance descriptions and/ or product specifications do not contain any statements of guarantee.
7.2 Acceptances of guarantee are not made by conclusive behaviour, but rather only by express declaration.

VIII. Place of performance, jurisdiction, applicable law

8.1 The place of performance and jurisdiction arising from the business relationship with our customer for the delivery and payment is Blumberg.
8.2 These GTC as well as all contractual relationships regarding deliveries and services with customers are subject to substantive German law and German procedural law, excluding the conflict of laws. The application of the United Nations Convention on Contracts for the International Sale of Goods Sale of goods (CISG) is excluded.

METZ CONNECT GmbH is member of the following organizations and associations.

METZ CONNECT GmbH

Im Tal 2
78176 Blumberg
Germany
Phone +497702 533-0
Fax +497702533-189
info@metz-connect.com www.metz-connect.com

[^0]: Contents | Control cabinet components | Timer relay

[^1]: Contents | Control cabinet components | Telecommunication products

